검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 52

        21.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using (99.9% purity), (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole + 1 wt.% , (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature () of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density () at 77 K and 0 T of the sintered Y123 was 700 , whereas the of the top-seeded melt growth (TSMG) processed Y1.5 sample was . The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.
        4,000원
        22.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Large single grain Gd1.5Ba2Cu3O7-y (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an NdBa2Cu3O7-y seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature (Tc) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities (Jcs) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 A/cm2 and 10,000-23,000 A/cm2, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many Gd2BaCuO5 (Gd211) particles of a few μm in size, which are flux pinning sites of Gd123, were trapped within the GdBa2Cu3O7-y (Gd123) grain; unreacted Ba3Cu5O8 liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.
        4,000원
        23.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of nano addition to superconducting properties of processed superconductors was examined. 0.1 wt.% and 1 wt.% nano powders were mixed with boron and magnesium powders by ball milling. The powder mixtures were made into pellets by uniaxial pressing. The pellets were heat-treated at in argon atmosphere for formation. It was found by powder X-ray diffraction that the raw powders were completely converted into after the heat treatment. The superconducting transition temperature () and critical current density (), estimated from susceptibility-temperature and curves, were decreased by nano addition. The and decrease by nano addition are attributed to the incorporation of iron and carbon with lattices (Fe substitution for Mg and C substitution for B) due to the high reactivity of the nano powder.
        4,000원
        24.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.
        4,000원
        25.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon was known to be one of effective additives which can improve the flux pinning of at high magnetic fields. In this study, glycerin was selected as a chemical carbon source for the improvement of critical current density of . In order to replace some of boron atoms by carbon atoms, the boron powder was heat-treated with liquid glycerin. The glycerin-treated boron powder was mixed with an appropriate amount of magnesium powder to composition and the powder pallets were heat treated at for 30 min in a flowing argon gas. It was found that the superconducting transition temperature of prepared using glycerin-treated boron powder was 36.6 K, which is slightly smaller than (37.1 K) of undoped . The critical current density of was higher than that of undoped and the improvement effect was more remarkable at higher magnetic fields. The , decrease and increase associated with the glycerin treatment for boron powder was explained in terms of the carbon substitution to boron site.
        4,000원
        28.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mother Ni-W (1-5 wt.%) alloy billets for coated conductor substrate were fabricated by powder metallurgy process. The tensile test results for the sintered Ni-W rods showed the increase of mechanical strength and decrease of ductility with increasing W content due to the solid solution hardening. All the fracture surfaces of the tested specimens showed the typical ductile fracture mode of dimple rupture due to the local necking. The Ni-W alloy billets were made into tape by cold rolling. After the appropriate heat treatment for recrystallization, the brass texture formed by the cold rolling was converted to the complete cube texture. The in-plane and out of plane texture of the tapes estimated by x-ray pole figure were smaller than 9 degree and 7 degree, respectively. The effect of the W addition on the texture development seems not to be significant.
        4,000원
        31.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100 showed poor elongation and low fracture strength, while the Wi rods sintered above 100 revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100 are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8 to 10. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.
        4,000원
        32.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        35.
        2001.06 구독 인증기관·개인회원 무료
        용융공정 (123) 초전도체는 고자장 하에서도 통전특성이 우수하다 그러나 123 초전도체에는 미세균열이나 기공과 같이 초전도체의 통전특성에 유해 한 요인들도 다수 포함된다. 미세균열은 고온 정방정 상이 저온 사방정상으로 상변 태 시 발생하는 웅력에 의해 생성된다. 반면, 기공은 123 성형체를 녹이는 과정에서 123 상에 포함된 산소원자들이 격자로부터 이탈되고, 이 산소원자들이 모여 액상에서 기공을 형성한다. 제조공정에 따라 기공의 크기와 밀도가 다르지
        36.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Formation of pores in melt-processed (123) oxides and its effect on the microstructure were studied. Spherical pores with a size of a few tens of microns were formed due to the evolution of oxygen gas during melting of a 123 oxide. Some of pores were converted into liquid pockets by liquid filling, but others remained unfilled. The liquid pockets were converted into spherical 123 regions with a lower (211)density through the peritectic reaction during subsequent cooling, while the pores were entrapped into the periteictically grown 123 grains. The spherical 123 regions often consists of a residual melt due to the unbalanced peritectically reaction.
        4,000원
        39.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Distribution of (211) Particles within (123) grains of melt infiltration processed YBCO oxides was investigated. Processing parameters were a temperature, atmosphere (air and ) and initial 211 size. The 211 particles were distributed randomly within the 123 grains when the initial 211 size was large, while they made x-like pattern and/or butterfly-like patterns when the 211 size was small. The 211 patterns were more clearly observed in the samples prepared at higher temperatures and under atmosphere. The 211 distribution was explained in terms of the interfacial energy relationship among the solid, particle and melt.
        4,000원
        1 2 3