검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        21.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        의료용 선형가속기의 헤드 구성요소인 표적물질과 일차 콜리메이터는 선속특징을 결정짓는데 가장 큰 영향을 미치며 이로 인해 발생하는 후방산란은 구조물 차폐와 장비 관리 관점에서 고려하여야 할 요소이다. 이에 본 연구에서는 몬테카를로 시뮬레이션 중 하나인 Geant4를 통해 선형가속기를 모델링하고 헤드 구성요소의 변화에 따른 후방산란 양상을 살펴보았다. 산란되어 발생한 전자의 경우, 표적물질이 위치한 일차 콜리메이터의 내부 반경에 대부분의 분포를 보였으며 이와 반대로 산란된 광자의 경우, 바깥쪽 영역에서 상대적으로 높은 에너지의 산란이 많음을 알 수 있었다. 산란된 양전자는 약 0.03%로 미미한 발생을 보였다. 일차 콜리메이터의 내부 반경이 달라짐에 따라 세 산란입자(전자, 광자, 양전자) 모두 반경 내부 쪽에서의 변화가 컸으며, 전체 반경의 변화에 따른 후방산란은 60 mm 이상에서부터 어느 정도의 영향을 보인다는 것을 알 수 있었다. 표적물질 두께의 변화에는 큰 영향을 받지 않는 것으로 나타났다. 이를 통하여 가속시킨 초기 전자에 대한 후방 쪽으로의 산란도 무시할 수 없음을 알 수 있었으며 주변 구성요소의 기하학적인 형태나 크기에 의해서도 후방산란의 양상이 달라질 수 있음을 알 수 있었다. 따라서 산란된 입자들의 에너지 분포를 통해 장비 관리의 관점에서도 고려하여야 할 결과라고 사료된다.
        22.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        최근 의료영상기술에서 유방암 엑스선 진단기술의 주요 이슈는 정확한 조기암 진단과 환자의 피폭선량의 감소에 있다. 엑스선 영상대비도를 높이고 피폭선량을 줄이는 기술 중 하나로써 다층박막거울을 이용한 단색 엑스선을 획득하는 연구가 선행되어 왔다. 그러나 기존의 Uniform 다층박막거울은 거울면의 일부 반사영역에서만 원하는 파장대역의 단색 엑스선을 얻을 수 있어서 엑스선 영상기술 응용에 한계가 있다. 본 연구에서는 다층박막거울의 전 영역에 걸쳐 동일한 단색엑스선을 얻기 위해 거울에 입사하는 백색 엑스선의 입사각에 상응하는 선형적 기울기의 박막두께를 갖는 Graded 다층박막거울을 설계하였고, 기존 이온빔 스퍼터링 장치에 마스크 제어 장치를 추가 제작하여 100×100mm2 크기로 제작하였다. 제작된 Graded 다층박막거울은 17.5keV의 단색엑스선을 획득할 수 있도록 설계하였으며 박막두께주기는 2.88nm~4.62nm(Center 3.87nm)이다. 엑스선 반사율은 60% 이상이며, 단색 엑스선의 FWHM은 1.4keV 이하이고 엑스선 빔 폭은 3mm정도이다. 유방촬영에 적합한 몰리브덴 특성엑스선에 해당하는 17.5keV의 단색 엑스선을 얻음으로써 저선량·고감도 유방암 진단장치 개발에 응용할 수 있을 것으로 기대된다.
        23.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        방사선 임상 관련 분야에서 컴퓨터의 사용으로 인해 카세트 사용에서는 볼 수 없는 아티팩트가 만들어지고 있다. 고스팅 아티팩트는 평판형 박막 트랜지스터(Flat Panel Thin-Film Transistor) 배열 검출기를 사용할 때 발생될 수 있다. 특히 고선량의 방사선을 고대조도의 물질에 노출시킨 영상을 획득한 후, 바로 저선량의 조사가 이루어진 영상이 획득될 때 고스팅 아티팩트가 발생할 수 있다. 본 실험에서 고스팅 아티팩트가 육안 관찰시 3분에서 사라지는 것을 확인할 수 있었으며 정량적 분석으로는 대략 6분에서 없어지는 것을 확인할 수 있었다. 또한 이 아티팩트는 관전류보다는 관전압의 영향을 더 받는다는 사실과 노출에 의한 포획전하의 방출이 아닌 시간에 의해 포획전하가 소멸된다는 사실을 실험을 통해 검증할 수 있었다.
        24.
        2014.10 KCI 등재 서비스 종료(열람 제한)
        전산화단층촬영장치의 영상재구성방법으로 필터보정역투영법이 광범위하게 사용되고 있다. 평행빔과 부채살빔의 재구성에 사용되는 투영에 잡음이 포함되었을 때 재구성 된 영상의 잡음을 살펴보았다. 평행빔과 부채살 구조에서 각각 360개, 720개의 투영으로 512×512 크기로 Visual C++을 이용하여 영상재구성하였고, 원본 Shepp-Logan 두부 모형을 매우 잘 복원한다는 것을 확인하였다. 필터보정역투영법의 현실적인 접근(유한한 투영 개수)으로 인해 입력 잡음이 없어도 영상재구성 과정에서 잡음이 발생하였다. 입력 잡음비 0.5% 이하에서 잡음이 빠르게 증가하기 때문에 CT 장치의 잡음 제거 기술 및 영상처리 기법의 개발이 필요할 것이다.
        25.
        2014.08 KCI 등재 서비스 종료(열람 제한)
        엑스선 의료영상이 디지털 시스템으로 발전함에 따라 의료영상의 평가 방법 또한 디지털 시스템에 맞춰 새롭게 개선되었으며 그 중 MTF(Modulation Transfer Function) 측정법은 Fujita이론에 기초한 에지법으로 ISO에 규정되었다. 에지법의 기초인 Fujita이론은 MTF 측정을 위해 슬릿의 각도를 디지털 검출기의 픽셀 열에 대하여 1° ∼ 2° 기울여 영상을 획득한 후 LSF를 합성하는 것으로 샘플링 간격은 각도에 따라 크게는 1/54배, 작게는 1/28배 감소하게 된다. 본 연구에서 사용된 장비는 Simens사의 MAMMOMAT Inspiration으로 비정질 셀레늄(amorphous selenium) 기반의 0.085 × 0.085 mm2 의 픽셀 사이즈를 갖는 검출기를 이용하여 presampling MTF를 측정하였다. 측정 방법은 Fujita의 슬릿법와 동일한 방법인 와이어법를 이용하였으며 측정된 영상에서 얻은 픽셀값을 이용하여 엑셀에서 이산 푸리에 변환을 시행하였다. 실험 결과 Fujita이론 대비 약 3배 이상의 샘플링 간격(sampling interval)의 경우 해상도 평가 지수인 10% MTF에서 약 85% 이하의 정확도를 보였으며 선예도 평가 지수인 50% MTF에서 약 93% 이하의 정확도를 나타내었다. 하지만 샘플링 간격이 Fujita 이론 대비 2배 정도 늘어난 경우는 50%와 10% MTF 모두 96% 이상의 정확도를 가진다는 것을 알 수 있었다.
        26.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        엑스선 디지털 검출기의 내부 픽셀들은 조금씩 다른 감도와 오프셋 변동을 가지게 되어 불균일한 영상이 얻어진다. 이러한 문제를 해결하기 위해서 flat-field 보정 방법이 개발되었고, 이는 디지털 의료 영상 시스템의 전처리 과정에서 필수적으로 수행된다. 그럼에도 불구하고 여러 가지 이유로 균일하지 않은 영상이 획득되는 경우가 종종 발생한다. 본 연구에서는 디지털 의료 영상 장비에서 획득된 불균일한 영상에 flat-field 보정을 다시 적용시켜 화질이 개선되는 것을 확인하였다. 그리고 객관적인 화질의 평가를 위해 보정 전후의 NPS를 각각 산출하여 비교하였다. 주파수 영역에서 잡음의 변화를 분석한 결과 저주파수 성분의 잡음이 flat-field 보정 후에 크게 제거된 것을 확인할 수 있었다.
        27.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        엑스선 회절분석기는 비파괴적인 방법으로 시료의 정보를 정성 및 정량적으로 분석할 수 있다. 엑스선 회절분석기에 는 다양한 광학소자가 사용된다. 평행빔 광학소자는 광축에 평행한 빔을 통과시키고 발산하는 빔을 제거하는 역할을 한다. 와이어 컷 제작과 스테인리스 스틸 평판을 연마하여 평행빔 광학소자를 제작하였고 엑스선 영상장치를 이용하여 그평행도를 평가하였다. 설계된 6 mrad과 매우 가까운 6.6 mrad의 평행도를 갖는 평행빔 광학소자를 제작하였다. 엑스선영상을 이용하면 개개의 평판의 평행도를 예측할 수 있을 뿐만 아니라 다양한 광학소자 평가에도 사용될 수 있을 것이다.
        28.
        2012.04 KCI 등재 서비스 종료(열람 제한)
        레이저 기술의 발전과 더불어 다양한 의료영역에서 레이저가 사용되고 있으며 그로 인한 위험성도 증가하고 있다. 레이저를 안전하게 사용하기 위해서는 레이저의 안전에 관한 지식을 가지고 관리할 수 있는 사람이 지정될 필요가 있다. 이에 따라 많은 나라에서 레이저안전관리자 체제를 운영하고 있다. 의료레이저안전관리자는 레이저의 안전사용과관련하여 교육과 훈련 등의 권한과 책임을 가진다. 본 연구에서는 의료레이저안전관리자의 미국의 운영현황을 살펴보고 의료레이저안전관리자의 역할과 국내 도입 방안을 살펴보았다.
        29.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        경 X선 형광분석 기법에 사용되는 X선 튜브는 X선의 휘도가 낮아 분석의 정밀도가 떨어지고 분석 시간 또한 오래 걸린다. 모세관 집광소자를 이용하면 X선 휘도의 이득(gain)을 최소 10 이상 얻을 수가 있다. 모세관 광학소자는 8.4keV의 텅스텐 특성방사선을 효율적으로 집광할 수 있도록 설계되었다. 파이렉스 유리로 된 모세관 모재를 풀러 (puller)를 이용하여 45 g의 추에 650˚의 온도를 가하여 모세관 광학소자를 제작하였다. 모세관 광학소자의 제작은 총 460분이 소요되었으며 제작된 모세관 광학소자의 길이는 87 mm, X선 입사부의 직경은 300 ㎛, 출구부의 직경은 192 ㎛로 제작되었다. 제작된 모세관 광학소자를 경 X선 형광분석에 적용하면 황(S)과 같은 경원소 검출의 정밀도를 높일 수 있을 것이다.
        30.
        2010.12 KCI 등재 서비스 종료(열람 제한)
        고 에너지 X선을 이용하는 응용에서 다층박막 거울은 매우 유용하다. 고 에너지 X선은 매우 짧은 다층박막 두께주 기를 요구한다. 두께주기가 수 나노미터로 매우 짧기 때문에 다층박막을 형성하는 층들은 서로 계면 거칠기나 상호확 산에 영향을 준다. 3.25nm의 두께주기를 갖는 C/W 다층박막 거울에서 1nm의 탄소 층의 특성을 살펴보았다. 탄소의 두께가 1nm로 매우 얇아도 텅스텐과 탄소의 층들은 매우 균일하게 증착되었으며, 탄소층은 미세구조가 없는 미정질 구조를 보였다. 투과전자현미경의 회절 영상을 통해서 텅스텐과 탄소의 상호확산이 발생했다는 것을 알수있었다.
        31.
        2010.09 KCI 등재 서비스 종료(열람 제한)
        엑스선 영상의 공간분해능은 영상획득 장치에 사용되는 광학소자의 성능에 의해 결정된다. 8.5keV에서 높은 공간분 해능 달성이 가능한 존 플레이트를 설계하였다. 방사광을 이용하는 대신 엑스선 튜브를 사용하는 영상시스템에서는 80nm의 공간분해능을 달성할 수 있음을 광선추적 기법을 이용하여 예측하였다. 전자빔 석판인쇄술을 이용하여 최외곽 폭 40nm를 갖는 존 플레이트가 제작하였다.
        32.
        2010.03 KCI 등재 서비스 종료(열람 제한)
        콘빔형 소동물용 CT 장치는 바이오-의료분야의 기초 실험에 활발히 응용되고 있다. 10μm의 직경을 가진 텅스텐 와이어(wire)와 물 팬텀을 이용하여 비교적 간단한 방법으로 소동물용 CT 장치를 평가할 수 있는 방법을 제시하였다. X선 튜브가 안정적으로 장시간 운전 가능한 조건에서 1° 간격으로 360개의 투영영상을 획득하고, 영상재구성을 통하 여 슬라이스 영상 및 3차원 영상을 얻었다. 콘빔형 소동물용 CT 장치는 배율 1.07배 위치에서 13.78lp/mm(공간해상 도 36.2μm)를 나타내었고, 80kV의 관전압에서 CNR 10.33 및 S/N 5.87을 보였다.
        33.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        단색 엑스선은 적은 방사선 피폭으로 대조도가 높은 의료영상을 만들 수 있다. 엑스선 튜브와 다층박막 거울을 결합하 면 높은 플루언스의 단색 엑스선을 얻을 수 있다. 몰리브덴(Mo) 타깃을 갖는 엑스선 튜브에서 Mo 특성방사선(17.5keV) 을 높은 반사율로 획득하기 위한 W/C 다층박막 거울의 최적화를 수행하였다. 반사율이 최대가 되는 조건에서 두께주기와 두께비를 결정하였다. 최적 설계된 다층박막 거울에 대한 두께주기와 브래그 정렬에 대한 공차를 구하였다. 증착 (deposition) 공차 0.2nm와 회전정렬 공차 ± 0.01°에서 이론 반사율의 85% 이상에 해당하는 반사율이 얻어질 수 있다. 다층박막 거울을 이용하면 높은 플루언스의 특성방사선을 얻어 낼 수 있기 때문에 의료영상 획득 장치에 많이 사용될 것 이다.
        1 2