검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dystocia, a challenging condition in obstetrics, can arise from various causes, including fetal monsters with structural abnormalities. This case report presents a unique case of dystocia due to a fetal monster known as Perosomus Elumbis in a beetal breed goat from Pakistan. The 4-years-old pregnant doe presented with prolonged straining and failure to deliver the fetus after 8 hours of labor. Upon examination, the cervix was dilated, and only the forelimbs of the fetus were visible in the birth canal. The subsequent delivery involved the application of manual traction by using a dystocia kit, and the removal of edematous fluid from the legs. The monster fetus exhibited absence of hair growth, along with the absence of thoracic vertebrae. Two other fetuses were present, with one found dead and the other alive. Posttreatment involved fluid therapy, antibiotics, and supportive care for the doe. This case report sheds light on the occurrence of Perosomus Elumbis fetal monsters and their impact on dystocia in goat breeding. Understanding the underlying causes and implementing appropriate management strategies are crucial for successful outcomes in similar cases.
        3,000원
        2.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Amniotic membrane stem cells are considered as a good alternative to embryonic stem cells, but their use in clinical studies is still not common. Here, exosomes from canine amniotic membrane mesenchymal stem cells (cAmMSCexo) were used for dog sperm cryopreservation. Upon cryopreserved straws using cryoprotectant containing 0, 0.5, 1, or 2 μg/mL of cAmMSC-exo were thawed, motility and membrane integrity were analyzed. However, results showed no significant differences between the groups. We concluded that cAmMSC-exo with lower than 2 µg/mL have no effects on sperm cryopreservation, and further studies to get higher concentrations of cAmMSC-exo should be conducted for clinical application.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This experiment was conducted to analyse the effects of flavone supplementation on the preimplantation development of in-vitro produced porcine embryos. During in-vitro development, immature oocytes and early embryos were exposed to different concentrations of flavone (0, 1μM, 25μM, 50 μM, and 100 μM respectively). Results showed that 100 μM of flavone significantly reduced the intracellular ROS levels of oocytes accompanied with a significant rise in GSH level. In parthenogenesis, no significant change was observed in the cleavage rates whether flavone was supplemented in IVM or IVC media. In IVM supplemented group, the blastocyst development rate was significantly enhanced by 1 μM concentration than other groups (51.5% vs. 41.3%, 44.0%, 36.3%, 31.7%; P<0.05) respectively. However, in IVC group 1 μM concentration significantly improved the blastocysts production than 50 μM and control groups (50.0% vs. 40.5%, 38.0%; P<0.05) respectively. Following nuclear transfer, the cleavage rate of IVM group was significantly more in 1 μM than 50 μM and 100 μM groups (92.9% vs. 89.7%, 87.8%; P<0.05), followed by similar pattern of cloned blastocysts production being significantly higher in 1 μM group than 50 μM, 100 μM and control groups (16.8% vs. 9.0%, 7.1%, 12.8%; P<0.05) respectively. In IVC group, 1 μM concentration resulted in significantly higher cleavage rate than 25 μM and 50 μM groups (91.7% vs. 87.8%, 88.8%; P<0.05) respectively. However, the blastocysts production was significantly higher in 100 μM group than others (26.2% vs. 13.6%, 14.0%, 18.2%; P<0.05) respectively. The optimal concentrations of flavone significantly enhanced the percentages of ICM:TE than control group (43.8% vs. 37.6%; P<0.05) accompanied with significantly higher expression levels of reprogramming related genes. In conclusion, the optimal concentrations of 1 μM during IVM and 100 μM during IVC can significantly improve the production of porcine in-vitro embryos.
        4,000원
        4.
        2018.11 구독 인증기관·개인회원 무료
        The objective of this study was to identify the proteins actively involved in the protection and repair of damaged cells, secreted by canine adipose derived mesenchymal stem cells (AT-MSCs) into the conditioned media. For this purpose, conditioned media (CM) was recovered from passage three stage canine AT-MSCs and skin fibroblasts cultured in serum free media after 24, 48 and 72 h. The extraction of exosomes was performed from 10-20 ml of CM using total exosome isolation kit. The isolated exosomes were then subjected to western analysis for the identification of annexin-I, annexin-II, histone H3 and dysferlin proteins. Results demonstrated the expression of proteins in the conditioned media isolated from canine AT-MSCs reflecting their potential in reducing the extent of damage at cellular levels. In conclusion, the conditioned media derived from canine AT-MSCs can be helpful in restoring the normal structure of cells both in vivo and in vitro conditions.