검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        5.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 점점 더 많은 연구자와 정부에서 해양에너지 자원 개발에 대한 관심이 고조되고 있다. 장죽수도는 조류에너지 밀도가 높아 조류 발전소를 건설하기에 적합한 잠재적 후보지 중 하나이다. 따라서 본 연구에서는 ADCIRC 모델을 이용하여 장죽수도의 조류자원의 잠재량을 평가하기 위한 수치적 접근방식을 제시하고, 내부 코드를 이용하여 조석 특성을 입력 매개변수로 활용하여 1 MW급 규모의 조류에너지 변환장치를 대상으로 4개의 레이아웃으로 배열하고 후류 효과로 인한 연간 에너지 생산량에 관한 수치해석을 수행하였다. 그 결과 효율이 가장 좋은 배치는 연간 최대 12.96 GWh/year의 에너지를 생성할 수 있으며, 이 값은 후류 효과로 인한 에너지 손실을 고려하 면 연간 0.16 GWh씩 감소될 수 있음을 보였다. 또한, 창낙조 때 터빈 요 각도를 변경함으로써 이 요소가 에너지 추출에 미치는 영향을 분석하였으며, 터빈 배열은 터빈 요 각도가 346°와 164°(북쪽에서 시계 방향으로)일 때 대조기와 소조기에서 차례로 최대 조류 에너지를 얻 을 수 있었다.
        4,000원
        6.
        2019.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a pico hydro turbine employing low head circulation water at fish farms is designed and evaluated. Due to the advantages of simple structures, small head requirements, and low-cost investment, the constant thickness propeller turbine is considered as a feasible solution. The design process based on the free vortex method is presented in full detail, and a 4-blade runner is built using BladeGen. The turbine performance is analyzed both numerically and via experimental methods. Despite slight differences, the results show similar trends between CFD simulations and experiments carried out on factory test-rigs in a wide range of working conditions. At the design flow rate, the turbine achieves the best efficiency of 70 %, generating 3.5 kW power when rotating at 420 rpm. The internal flow field, as well as the turbine's behavior, are investigated through the distribution of blade streamlines, pressure, and velocity around the runner. Moreover, the pressure coefficient on the blade surface at 3 span positions is plotted while the head loss for each simulation domain is calculated and displayed by charts.
        4,000원
        8.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        원심 해수냉각 펌프를 분석하기 위하여 다른 운전 유량에 대한 캐비테이션 거동을 조사하였다. 3D 2상 해석은 ANSYS-CFX 상 용코드로 수행되었다. 해석에는 k-ε 난류와 Rayleigh-Plesset cavitation 모델이 사용되었다. 수치 예측에 기초하여 세 가지 토출 유량값에 대 하여 헤드 드롭 특성곡선이 작성되었다. 더 높은 유량에서 임펠러는 버블 캐비테이션에 보다 취약하다. 0.7Q, Q 및 1.3Q(Q: 설계 유량)에서 작동하는 펌프의 3 % 헤드 드롭 위치는 각각 NPSHa 1.21 m, 1.83 m 및 3.45 m에 해당한다. 증기 기포의 볼륨이 예측되고 캐비테이션의 위치는 임펠러 내에서 발생하는 캐비티를 시각화하여 예상하였다. 또한, 압력계수와 날개 부하 분포가 구체적으로 제시되어 캐비테이션이 펌프 운전에 미치는 해로운 영향을 나타냈다. 또한, 압력계수 분포와 날개부하 차트가 구체적으로 제시되어, 펌프 운전에 캐비테이션이 미치는 해로운 영향을 나타냈다.
        4,000원