검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.10 구독 인증기관·개인회원 무료
        Minimizing of radiation exposure for the operating and decommissioning personnel is a key indicator for safe operation of the NPP. This is reflected in the application of the ALARA (As Low As Reasonable Achievable) principle. The main objectives of radiation management during full system decontamination for NPP decommissioning are to reduce the exposure dose, prevent contamination of the body and reduce solid radioactive waste. In order to reduce exposure of workers, the dose rate should be reduced by installing a temporary shield after evaluating the dose rate for the piping, component and decontamination equipment of the decontamination path before full system decontamination. Furthermore, unnecessary exposure to radiation should be reduced by thoroughly entering and exciting the radiation area and limiting the access to the high-radiation area except for workers or persons concerned. A telemetric dosimetry system should be as installed to remotely monitor radiation levels at different locations within the decontamination flow path. Remote monitoring of radiation fields using teledosimetry worked well in assessing process effectiveness and is highly recommended. However, care must be taken to place the detectors in appropriate locations. For the prevent of body contamination, it is necessary to install a fence using a heat-resistant waterproof sheet to prevent leakage of highly radioactive contamination water. When replacing high-dose filters and ion exchange resins, it is necessary to remotely monitor to reduce the exposure dose of workers.
        2.
        2022.05 구독 인증기관·개인회원 무료
        The purpose of full system decontamination before decommissioning a nuclear power plant is to reduce radiation exposure of decommissioning workers and to reduce decommissioning waste. In general, full system decontamination removes the CRUD nuclides deposited on the inner surface of the reactor coolant system, chemical and volume control system, residual heat removal system, pressurizer, steam generator tube, etc. by chemical decontamination method. The full system decontamination process applied to Maine Yankee and Connecticut Yankee in the USA, Stade, Obrigheim, Unterweser, Nekawestheim Unit 1 in Germany, Mihama Unit 1 and 2 in Japan, Jose Cabrera Unit 1 in Spain, and Barseback Unit 1 and 2 in Sweden are HP/CORD UV, NP/CORD UV, and DfD. In this study, the quantity of 60Co radioactivity removal, metal removal, ion exchange resin and filter generation according to reactor power, surface area and volume of the full system decontamination flow path, and the decontamination process were compared and analyzed. In addition, the quantity of 60Co radioactivity removal by each nuclear power plant was compared and analyzed with the evaluation results of the 60CO radioactivity inventory of the Kori Unit 1 full system decontamination loops conducted by SAE-AN Enertech Corporation.