검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.04 서비스 종료(열람 제한)
        Tuned Mass Damper (TMD) and viscoelastic damper (VED) is a well-known vibration absorbing equipment in the civil engineering realm. Although the dampers are typically used separately, combined use of dampers worth investigation. For that purpose, a numerical model of multi-story building equipped with TMD and VED was developed using finite element software SAP2000. In this study, modal parameter based distribution of hybrid damper system (HDS) using Tuned Mass Damper (TMD) and viscoelastic damper (VED) together has been adopted to reduce the seismic response of the structure.
        2.
        2016.04 서비스 종료(열람 제한)
        In here, a Modified Diagrid Structural System (MDSS) has been proposed to compare with diagrid structural system, Regular Frame with Optimized Single Tuned Mass Damper (RFwOSTMD) system and Regular Frame without Optimized Single Tuned Mass Damper (RFwoOSTMD) system. To this aim, a rectangular reinforced cement concrete (R.C.C) building and a diagrid R.C.C multi-storey building were considered, and analyzed without controlling device, with optimized TMD, Diagrid Structural System (DSS), and MDSS. All of the models are investigated by using SAP2000. All of the buildings are analyzed and evaluated under El-centro earthquake. The response of proposed MDSS under earthquake is compared with the RFwoOSTMD, RFwOSTMD and DSS. The results show that the proposed MDSS is preferable than the DSS, as well as RFwOSTMD.
        3.
        2016.04 서비스 종료(열람 제한)
        In this present study to investigate the seismic response of an offshore wind turbine, incorporating with bottom fixed Jacket support structure using semi-coupled analysis method. Fully coupled, aero-servo-hydro-elastic simulations and uncoupled seismic simulation have been done to carry out this investigation. The fully coupled simulation is accomplished and executed by FAST 8 (NREL, USA) to determine the global loads, which consists of six components of forces and moments at x-y-z directions of the tower base. In the uncoupled case, transient analysis has been done using the tower base loads as well as seismic loads by ANSYS. This paper presents a precise dynamic analysis, which can evaluate the dynamic response of three crucial points (tower top, tower base and mud line of substructure) under seismic load to make better decision in the case of structural design of wind turbine.