검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 937

        1.
        2024.04 구독 인증기관·개인회원 무료
        Subgenus Bothynoptera Schaum, 1863 of the genus Parena is mainly found in Oriental region. Despite this widespread distribution, species of the subgenus Bothynoptera are poorly known in Korea. While a total of 14 species have been recorded worldwide, only 3 species have been recorded in Korea. In this study, as a revisional work of Korean known species, a pictorial key and photographs of habitus and male genitalia for each species are provided, with a newly recorded species in Korea.
        2.
        2024.04 구독 인증기관·개인회원 무료
        Currently, 12 subspecies of Coptolabrus smaragdinus have been recorded in Korea, of which 7 subspecies are listed in South Korea. C. smaragdinus has limited movement due to degenerated hindwings, resulting in high intraspecific diversity due to geographic isolation. Previous studies have been mainly classified based on external characters or genitalia structure, but the differences between subspecies are very ambiguous. In this study, we aimed to more clearly distinguish at the subspecific classification level, by examining the male aedeagal and inflated endophallus. Additionally, we provide photos of adult, endophallus and the process of endophallus inflation.
        3.
        2024.04 구독 인증기관·개인회원 무료
        The genus Bembidion is a prominent terrestrial group found in various regions around the world, encompassing a large number of species. Species of this genus have a reduced apical palpomere, as do all members of the tribe Bembidiini. This study reviews four species belonging to the subgenus Plataphus, which is included within the genus Bembidion. Descriptions and photos of adults are provided.
        4.
        2024.04 구독 인증기관·개인회원 무료
        The continuous use of pesticides with the same mode of action has lead to the development of insecticide resistance in the target pests. Establishing pesticide resistance management methods and effective control strategies for these pests has become an important target. Bemisia tabaci, a representative pest of greenhouse, directly affects the growth of crops at all stages of its development except eggs. It also causes indirect damage by secreting honeydew that eventually promotes sooty mold in leaves and fruits. In this study, eight insecticides with different mechanisms of action (Flonicamid, Fluxametamide, Spinetoram, Cyantraniliprole, Dinotefuran, Pyridaben, Milbemectin and Pyriproxyfen), and registered for use against cucumber B. tabaci were selected and tested for insecticide resistance. The tested populations of B. tabaci were collected from greenhouse cucumber cultivations in 12 domestic regions. The results were presented as RR (Resistance ratios), and CEI (Control efficacy index) values.
        5.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to prepare kombucha, a fermented tea beverage, containing Dendropanax morbiferus (DM) leaves and roots, and analyze its antioxidant and intracellular activities. We compared the pH change, total acidity, radical scavenging activity, and oxygen radical absorbance capacity (ORAC) of kombucha fermented with black tea alone and that with added DM leaves or roots during fermentation. Using RAW 264.7, we evaluated the effects of kombucha containing different DM parts on nitric oxide (NO) production and inflammation-related cytokine content in cells. Kombucha containing ethanol extracts of DM leaves (BTK-E-DML) and roots (BTK-E-DMR) showed higher radical scavenging activity and ORAC 3 d after fermentation than that prepared from black tea alone (BTK-Ori). In an in vitro experiment using RAW 264.7, samples were treated with 8 mg/mL kombucha considering cytotoxicity; the lipopolysaccharide (LPS)-induced NO content significantly reduced after BTK-E-DML and BTK-EDMR treatments compared with that after BTK-Ori treatment. Additionally, the levels of interleukin-6 and tumor necrosis factor-alpha, which were LPS-stimulated inflammatory cytokines, significantly decreased in cells treated with BTK-E-DML and BTK-E-DMR 15 d after fermentation compared with those treated with BTK-Ori. In conclusion, these results demonstrate that kombucha fermented with the leaves and roots of DM increases antioxidant activity and can significantly regulate inflammatory responses at the cellular level.
        4,000원
        12.
        2023.11 구독 인증기관·개인회원 무료
        Alpha activities can be used for categorization, transportation, and disposal of radioactive waste generated from the operation of nuclear facilities including nuclear power plants. In order to transport and dispose of such low- and intermediate-level radioactive waste (LILW) to the Wolsong LILW Disposal Center (WLDC) at Gyeongju, the gross alpha concentration of an individual drum should be determined according to the acceptance criteria. In addition, when the gross alpha concentration exceeds 10 Bq/g, the inventory of the comprising alpha emitters in the waste is to be identified. Gross alpha measurements using a proportional counter are usually straightforward, inexpensive, and high-throughput, so they are broadly used to assay the total alpha activity for environmental, health physics, and emergency-response assessments. However, several factors are thoughtfully considered to obtain a reliable approximate for the entire alpha emitters in a sample, which include the alpha particle energy of a particular radionuclide, the radionuclide that is used as a calibration standard, the uniformity of film in a planchet, time between sample collection and sample preparation, and time between sample preparation and counting. Korea Atomic Energy Research Institute (KAERI) have evaluated the inventory of radionuclides in low-level radioactive waste drums to send every year hundreds of them to the WLDC. In this presentation, we revisit the gross alpha measurement results of the drums transported to WLDC in the past few years and compare them with the concentrations of alpha emitters measured from alpha spectrometry and gamma spectrometry. This study offers an insight into the gross alpha measurement for radioactive waste regarding calibration source, self-absorption effect, composition of alpha emitters, etc.
        13.
        2023.11 구독 인증기관·개인회원 무료
        The physicochemical similarities of hydrogen isotopes have made their separation a challenging task. Conventional methods such as cryogenic distillation, Girdler sulfide process, chromatography, and thermal cycling absorption have low separation factors and are energy-intensive. To overcome these limitations, research has focused on kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS) effects for selective separation of hydrogen isotopes. Porous materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), zeolites, carbon, and organic cages have been studied for hydrogen separation. In this study, we focus the enhancement for CAQS to provide the cations due to the chemical affinity between hydrogen isotope and unsaturated sites by cations in zeolite beads. Cation exchanged zeolite beads was synthesized with cobalt, copper, nickel, iron and silver in zeolite 4A beads. Synthesized cation exchanged zeolite was analyzed for the surface area and pore size in N2 and adsorption behaviors of hydrogen isotopes (D2/H2) for various cation exchanged zeolite beads using BET at 77 K. The study predicts the D2/H2 adsorption selectivity based on the results obtained with BET. These hydrogen isotope adsorption results will provide a foundation for future processes for tritium separation.
        14.
        2023.11 구독 인증기관·개인회원 무료
        Spent ion exchange resins have been generated during the operation of nuclear facilities. These resins include radioactive nuclides. It is needed to fabricate them into a stable form for final disposal. Cement solidification process is a useful method for the fabrication of them into a waste form for final disposal. In this study, proper conditions for the fabrication of them into a stable waste form were determined using the cement solidification process. In-drum waste forms were then produced at the conditions, where the stability of representative samples was evaluated for final disposal. The samples were satisfied to the Waste Acceptance Criteria for low and intermediate level radioactive waste disposal sites. This result can be utilized to derive optimal conditions for the fabrication of spent ion exchange resins into a final disposal form.
        15.
        2023.11 구독 인증기관·개인회원 무료
        Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
        16.
        2023.11 구독 인증기관·개인회원 무료
        The seven-year research project entitled “Development of workflow for integrated 3D geological site descriptive modeling” is being carried out from 2023. This research is funded by Ministry of Trade, Industry, and Energy (MOTIE). Progress of the research is discussed here. The integrated 3D geological SDM (site descriptive model; GSDM hereafter) consists of three part; 1) three dimensional representation of geologic elements, 2) database for material properties and modeling results from SDMs of other disciplines (e.g., rock mechanics), and 3) a visualization tool for geology, material properties and modeling results. The GSDM is comparable to the GDSMs of SKB and POSIVA in its representation of geology by volume of geologic elements. However, our GSDM is different in that extra information of material properties and an extra tool for visualization is included in the GDSM. The rationale for incorporating material properties and a visualization tool into the GSDM is to expedite the development of the GSDM and SDMs of other disciplines by allowing single institution to integrate database and visualization with the GSDM. SKUA-GOCAD is used for representation of geologic surfaces for ductile and brittle shear zones, and also for surfaces for delineation of volumes of rock units. We have adopted SKUAGOCAD because the program offers powerful functions of interpolation including borehole data and geophysical prospecting. So far, we have tested the program for five different geologies, including sedimentary, high-grade metamorphic, and intrusive igneous geology. The test results are promising. Incorporation of data and modeling results for the SDMs of other disciplines is at conceptual stage. The working conceptual model involves the following steps, 1) to provide the modeler of other disciplines with surface information representing geologic elements, 2) the modeler returns not only material properties but the results of numerical analysis, and 3) incorporation of material properties and modeling results into database. Since the numerical codes in other disciplines adopt different types of formats for 3D geology, we plan to adopt the widely used FEM format prepared by Gmsh. The visualization tool will also adopt Gmsh for graphical representation of 3D geology as well as database for material properties and modeling results. When the working model of GSDM becomes available, rapid and significant progress is expected in the SDMs of other disciplines and related areas, for example, geotechnical investigation for deep geological repository.
        17.
        2023.11 구독 인증기관·개인회원 무료
        The effectiveness of a crystalline natural barrier in providing sealing capabilities is based on the behavior of numerous fractures and their intersections within the rock mass. It is important to evaluate the evolving characteristics of fractured rock, as the hydro-mechanical coupled processes occurring through these fractures play a dominant role. KAERI is actively developing a true tri-axial compression test system and concurrently conducting hydro-mechanical experiments using replicated fractured rock samples. This research is focused on a comprehensive examination of coupled processes within fractures, with a particular emphasis on the development of true tri-axial testing equipment. The designed test system has the capability to account for three-dimensional stress conditions, including vertical and both maximum and minimum horizontal principal stresses, realizing the disposal conditions at specific underground depths. Notably, the KAERI-designed test system employs the mixed true tri-axial concept, also known as the Mogi-type, which allows for fluid flow into fractures under tri-axial compression conditions. This system utilizes a hydraulic chamber to maintain constant stress in one direction through the application of oil pressure, while the other two directional stresses are applied using rigid platens with varying magnitudes. Once these mechanical stress conditions are established, control over fluid flow is achieved through the rigid platens in contact with the specimen section. This pioneering approach effectively replicates in-situ mechanical conditions while concurrently observing the internal fluid flow patterns within fractures, thereby enhancing our capacity to study these coupled phenomena. As future research, numerical modeling efforts will be proceeding with experimental data-driven approaches to simulate the coupled behavior within the fractures. In these numerical studies, two distinct fracture geometry domains will be generated, one employing simplified rough-walled fractures and the other utilizing mismatched rough-walled fractures. These investigations mark the preliminary steps in the process of selecting and validating an appropriate numerical model for understanding the hydro-mechanical evolution within fractures.
        18.
        2023.11 구독 인증기관·개인회원 무료
        It is crucial to understand the hydro-mechanical behavior of rock mass to assess the performance of natural barriers. As rock fractures serve as both mechanically weak planes and prominent pathways for hydraulic flow, they significantly influence the hydro-mechanical behavior of the rock mass. Hence, understanding the characteristics of rock fractures is necessary to analyze the long-term behavior of natural barriers. In particular, fracture apertures are crucial parameters directly associated with groundwater flow and consequently hold significant importance in determining the hydro-mechanical behavior of natural barriers. Fracture apertures are defined as mechanical and hydraulic apertures, and various studies have been conducted to measure and analyze them. However, direct measurement of mechanical aperture according to changes in normal stress is known to be a challenging task. For this reason, there has been a scarcity of direct comparative findings between mechanical and hydraulic apertures under various normal stress conditions. This study aims to analyze the characteristics of the mechanical and hydraulic apertures according to changes in normal stress based on experimental results. A digital analysis technique using a pressure film image was applied to analyze the mechanical aperture characteristics of the fracture. This technique can be applied by performing a pressure film compression test and a normal stiffness test on a fracture specimen, and has the advantage of being able to derive mechanical apertures under various normal stress conditions. The hydraulic aperture characteristics of the fracture were analyzed based on Cubic law after measuring the flow rate by performing a constant pressure injection test under triaxial compression conditions. By applying various confining pressures, it was possible to examine the hydraulic apertures according to changes in normal stress conditions. Through the experimental results, the relationship between the mechanical and hydraulic apertures of the fracture was summarized under various normal stress conditions. In addition, the experimental results were used to examine the applicability of various empirical equations for mechanical and hydraulic apertures proposed in previous studies. The characteristics of the fracture aperture resulting from this study are significant because they are required in the hydro-mechanical model of natural barriers. Future studies will entail further experiments, with the objective of establishing novel relationships based on the accumulation of experimental data.
        19.
        2023.11 구독 인증기관·개인회원 무료
        The nuclide management process for reducing the environmental burden being developed by the Korea Atomic Energy Research Institute is performed in molten salts, resulting in contaminated salt wastes containing fission products such as Cs, Sr, Ba, and rare-earth nuclides. In addition, the spent fuel of a molten salt reactor (MSR) contains a variety of fission products, and a purification process may be required for the reuse of the salt and the separation and disposal of the fission products in the spent nuclear fuel. The melt-crystallization method is a technique used for the purification and separation of chemicals or metals based on the different melting points of the different substances. In a recent study, our group developed a reactive-crystallization method using Li2CO3 precipitation agent to precipitate metal corrosion from the reactor through a chlorination reaction by HCl and Cl2, which may occur in chloride molten salt, and successfully precipitated the metal precipitate and purified and recovered LiCl salt. In this study, reactive-crystallization method has been established for removing fission products and corrosive materials. Using the reactive crystallization method, white LiCl-KCl salt that was not discolored by metal corrosion was recovered through the crystallization plates, and fission products and metal elements were shown to be suppressed to several ppm in the purified salt. Consequently, high-purity salts were recovered with high nuclide and corrosive separation efficiencies. The reactive crystallization procedure can also be applied to other salt waste systems, such as MSR nuclear fuel treatment and molten salt chemistry for the elimination of corrosive substances.
        20.
        2023.11 구독 인증기관·개인회원 무료
        The solid-state chemistry of uranium is essential to the nuclear fuel cycle. Uranyl nitrate is a key compound that is produced at various stages of the nuclear fuel cycle, both in front-end and backend cycles. It is typically formed by dissolving spent nuclear fuel in nitric acid or through a wet conversion process for the preparation of UF6. Additionally, uranium oxides are a primary consideration in the nuclear fuel cycle because they are the most commonly used nuclear fuel in commercial nuclear reactors. Therefore, it is crucial to understand the oxidation and thermal behavior of uranium oxides and uranyl nitrates. Under the ‘2023 Nuclear Global Researcher Training Program for the Back-end Nuclear Fuel Cycle,’ supported by KONICOF, several experiments were conducted at IMRAM (Institute of Multidisciplinary Research for Advanced Materials) at Tohoku University. First, the recovery ratio of uranium was analyzed during the synthesis of uranyl nitrate by dissolving the actual radioisotope, U3O8, in a nitric acid solution. Second, thermogravimetric-differential thermal analysis (TG-DTA) of uranyl nitrate (UO2(NO3)2) and hyper-stoichiometric uranium dioxide (UO2+X) was performed. The enthalpy change was discussed to confirm the mechanism of thermal decomposition of uranyl nitrate under heating conditions and to determine the chemical hydrate form of uranyl nitrate. In the case of UO2+X, the value of ‘x’ was determined through the calculation of weight change data, and the initial form was verified using the phase diagram for the U-O system. Finally, the formation of a few UO2+X compounds was observed with heat treatment of uranyl nitrate and uranium dioxide at different temperature intervals (450°C-600°C). As a result of these studies, a deeper understanding of the thermal and chemical behavior of uranium compounds was achieved. This knowledge is vital for improving the efficiency and safety of nuclear fuel cycle processes and contributes to advancements in nuclear science and technology.
        1 2 3 4 5