검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The effectiveness of a crystalline natural barrier in providing sealing capabilities is based on the behavior of numerous fractures and their intersections within the rock mass. It is important to evaluate the evolving characteristics of fractured rock, as the hydro-mechanical coupled processes occurring through these fractures play a dominant role. KAERI is actively developing a true tri-axial compression test system and concurrently conducting hydro-mechanical experiments using replicated fractured rock samples. This research is focused on a comprehensive examination of coupled processes within fractures, with a particular emphasis on the development of true tri-axial testing equipment. The designed test system has the capability to account for three-dimensional stress conditions, including vertical and both maximum and minimum horizontal principal stresses, realizing the disposal conditions at specific underground depths. Notably, the KAERI-designed test system employs the mixed true tri-axial concept, also known as the Mogi-type, which allows for fluid flow into fractures under tri-axial compression conditions. This system utilizes a hydraulic chamber to maintain constant stress in one direction through the application of oil pressure, while the other two directional stresses are applied using rigid platens with varying magnitudes. Once these mechanical stress conditions are established, control over fluid flow is achieved through the rigid platens in contact with the specimen section. This pioneering approach effectively replicates in-situ mechanical conditions while concurrently observing the internal fluid flow patterns within fractures, thereby enhancing our capacity to study these coupled phenomena. As future research, numerical modeling efforts will be proceeding with experimental data-driven approaches to simulate the coupled behavior within the fractures. In these numerical studies, two distinct fracture geometry domains will be generated, one employing simplified rough-walled fractures and the other utilizing mismatched rough-walled fractures. These investigations mark the preliminary steps in the process of selecting and validating an appropriate numerical model for understanding the hydro-mechanical evolution within fractures.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The Barcelona Basic Model (BBM) is an elasto-plastic model used to describe the coupled thermo-hydro-mechanical behaviors of unsaturated soil. BBM is frequently adopted to model the unique swelling behavior of bentonite, which is generally considered as the buffer material between the host rock and the canister containing high-level radioactive waste in deep geological repositories, under the changing thermal, hydraulic, mechanical and chemical conditions during the lifetime of repository. Therefore, a variety of the continuum-based numerical methods tried to add the BBM for modelling the multi barrier systems of geological repository and succeeded to describe the elasto-plastic deformation of bentonite. However, to demonstrate the entire barrier systems the host rock should be modelled simultaneously with the buffer materials, and the continuum-based methods may be limited in their ability to reflect the fracture networks in the host rock which could be the major flow channels of groundwater. This research applies BBM in 3DEC, a three-dimensional block-based discrete element method, and validates the model by comparing the change of specific volume and mean effective stress during three numerical test cases. Discontinuum-based numerical methods with BBM can be extended to describe the coupled thermo-hydro-mechanical processes of multi-barrier systems in geological repositories, with a focus on the interaction between the host rock and bentonite.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The natural barrier system surrounding the geological repository for high-level radioactive waste plays a crucial role in preventing or delaying the leakage of radionuclides. Therefore, the natural barrier should ensure low permeability to prevent groundwater flow into the engineered barrier system throughout the repository’s lifetime. Crystalline rock, considered as the host rock for the geological repository in Korea, exhibits low intact rock permeability, but the crystalline rock often contains the multiple discontinuities due to its high brittleness that can allow the unexpected fluid flow. Therefore, the long-term hydraulic behavior of the discontinuity should be characterized while considering additional thermal, mechanical, and chemical effects. In comparison to thermal, hydraulic, and mechanical processes, the chemical processes on the discontinuities progress relatively slowly, resulting in limited researches to include these chemical processes. This research introduces mechanisms the involving coupled thermal-hydraulic-mechanicalchemical processes focusing on the rough fracture surfaces and asperities. The chemically-induced changes in mechanical and hydraulic properties are described based on pressure solution and precipitation concepts. A comprehensive review of laboratory tests, field tests, and numerical simulations is conducted related to the chemically-induced coupled processes in fractured rock. Laboratory tests, in particular, concentrate on microscopic changes in fracture asperities induced by pressure solution to analyze chemically-induced aperture changes. The TOUGHREACT, an integral finite difference method program for thermal-hydraulic-chemical simulations, is generally employed to model the chemical response of pressure solution and precipitation on fracture surfaces. The TOUGHREACT includes a module to describe effective porosity and permeability changes based on the modified cubic law, so the real-time change of the fracture permeability can be reflected during the flow simulation. Considering the coupled thermal-hydraulic-mechanicalchemical processes of discontinuity, it becomes evident that the chemical processes under repository conditions (long-term, high temperature, and high pressure) can disturb the hydraulic performance of the natural barrier, so further research is required to characterize the chemically-induced coupled processes for assessing the long-term performance of the natural barrier system.
        6.
        2022.05 구독 인증기관·개인회원 무료
        Discontinuum-based numerical methods can contain the multiple discontinuities in a model and reflect the thermal, hydraulic and mechanical characteristics of discontinuities. Therefore, discontinuum methods can be appropriate to simulate the model which require the detailed analysis of the coupled thermo-hydro-mechanical processes in fractured rock such as geothermal energy, CO2 geo-sequestration, and geological repository of the high-level radioactive waste. TOUGH-3DEC, the three-dimensional discontinuum simulators for the coupled thermo-hydro-mechanical analysis, was developed by linking the integral finite difference method TOUGH2 and the explicit distinct element method 3DEC to describe the coupled thermo-hydro-mechanical processes in both porous media and discontinuity. TOUGH2 handles thermo-hydraulic analysis by the internal simulation module, and 3DEC performs mechanical study based on the constitutive models of porous media and discontinuity with coupling the thermal and hydraulic response from TOUGH2. The thermal and hydraulic couplings are the key processes and should be carefully verified by sufficient cases, so this study performed the thermomechanical and hydro-mechanical simulations which are modelling the analytic solutions including the uniaxial consolidation, fracture static opening, and the heating of a hollow cylinder problems. Each thermo-mechanical and hydro-mechanical verification case is also validated by comparing with the results of the other continuum and discontinuum-based numerical methods. TOUGH-3DEC results follow the analytic solutions and show better accuracy than the continuum-based numerical methods in the static fracture opening problem. The developed TOUGH-3DEC simulator can be expanded to coupled thermo-hydro-mechanical-chemical analysis in fractured rock mass, and the simulator needs to be verified by more complicated coupled processes problems which require in the chemical coupling.