검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 47

        1.
        2023.11 구독 인증기관·개인회원 무료
        In environments where buffer materials are exposed to increased temperature due to the decay heat emitted by radioactive waste, it is crucial to assess the performance of the buffer material in relation to temperature effects. In this study, we conducted experiments using Bentonil-WRK, a calcium-type bentonite, compacted to a dry density of 1.65 g/cm3 and an initial water content of 15%. The experimental temperature conditions were set to 30, 60, 90, 110, and 130°C. We observed that the swelling pressure of the compacted bentonite buffer decreased as the temperature increased. The findings from this study can provide valuable guidance for the design of high-level waste repository in Korea.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The buffer is installed around the disposal canister, subjected to heating due to decay heat while simultaneously experiencing expansion influenced by groundwater inflow from the surrounding rock. The engineering barrier system for deep geological disposal require the evaluation of longterm evolution based on the verification of individual component performance and the interactions among components within the disposal environment. Thus, it is crucial to identify the thermalhydro- mechanical-chemical (THMC) processes of the buffer and assess its long- and short-term stability based on these interactions. Therefore, we conducted experimental evaluations of saturationswelling, dry heating, gas transport, and mineralogical alterations that the buffer may undergo in the heated-hydration environment. We simulated a 310 mm-thick buffer material in a cylindrical form, simulating the domestic disposal system concept of KRS+ (the improved KAERI reference disposal system for spent nuclear fuel), and subjected it to the disposal environment using heating cartridges and a hydration system. To monitor the thermal-hydro-mechanical behavior within the buffer material, load cells were installed in the hydration section, and both of thermal couples and relative humidity sensors were placed at regular intervals from the heat source. After 140 days of heating and hydration, we dismantled the experimental cell and conducted post-mortem analyses of the samples. In this post-mortem analysis, we performed functions of distance from the water contents, heat source, wet density, dry density, saturation, and X-Ray diffraction analysis (XRD). The results showed that after 140 days in the heated-hydration environment, the samples exhibited a significant decrease water contents and saturation near the heat source, along with very low wet and dry densities. XRD Quantitative Analysis did not indicate mineralogical changes. The findings from this study are expected to be useful for input parameters and THMC interaction assessments for the long-term stability evaluation of buffer in deep geological disposal.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The high-level radioactive waste repository must ensure its performance for a long period of time enough to sufficiently reduce the potential risk of the waste, and for this purpose, multibarrier systems consisting of engineered and natural barrier systems are applied. If waste nuclides leak, the dominating mechanisms facilitating their movement toward human habitats include advection, dispersion and diffusion along groundwater flows. Therefore, it is of great importance to accurately assess the hydrogeological and geochemical characteristics of the host rock because it acts as a flow medium. Normally, borehole investigations were used to evaluate the characteristics and the use of multi-packer system is more efficient and economical compared to standpipes, as it divides a single borehole into multiple sections by installing multiple packers. For effective analyses and groundwater sampling, the entire system is designed by preselecting sections where groundwater flow is clearly remarkable. The selection is based on the analyses of various borehole and rock core logging data. Generally, sections with a high frequency of joints and evident water flow are chosen. Analyzing the logging data, which can be considered continuous, gives several local points where the results exhibit significant local changes. These clear deviations can be considered outliers within the data set, and machine learning algorithms have been frequently applied to classify them. The algorithms applied in this study include DBSCAN (density based spatial clustering of application with noise), OCSVM (one class support vector method), KNN (K nearest neighbor), and isolation forest, of which are widely used in many applications. This paper aims to evaluate the applicability of the aforementioned four algorithms to the design of multi-packer system. The data used for this evaluation were obtained from DB-2 borehole logging data, which is a deep borehole locates near KURT.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The Barcelona Basic Model (BBM) is an elasto-plastic model used to describe the coupled thermo-hydro-mechanical behaviors of unsaturated soil. BBM is frequently adopted to model the unique swelling behavior of bentonite, which is generally considered as the buffer material between the host rock and the canister containing high-level radioactive waste in deep geological repositories, under the changing thermal, hydraulic, mechanical and chemical conditions during the lifetime of repository. Therefore, a variety of the continuum-based numerical methods tried to add the BBM for modelling the multi barrier systems of geological repository and succeeded to describe the elasto-plastic deformation of bentonite. However, to demonstrate the entire barrier systems the host rock should be modelled simultaneously with the buffer materials, and the continuum-based methods may be limited in their ability to reflect the fracture networks in the host rock which could be the major flow channels of groundwater. This research applies BBM in 3DEC, a three-dimensional block-based discrete element method, and validates the model by comparing the change of specific volume and mean effective stress during three numerical test cases. Discontinuum-based numerical methods with BBM can be extended to describe the coupled thermo-hydro-mechanical processes of multi-barrier systems in geological repositories, with a focus on the interaction between the host rock and bentonite.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The natural barrier system surrounding the geological repository for high-level radioactive waste plays a crucial role in preventing or delaying the leakage of radionuclides. Therefore, the natural barrier should ensure low permeability to prevent groundwater flow into the engineered barrier system throughout the repository’s lifetime. Crystalline rock, considered as the host rock for the geological repository in Korea, exhibits low intact rock permeability, but the crystalline rock often contains the multiple discontinuities due to its high brittleness that can allow the unexpected fluid flow. Therefore, the long-term hydraulic behavior of the discontinuity should be characterized while considering additional thermal, mechanical, and chemical effects. In comparison to thermal, hydraulic, and mechanical processes, the chemical processes on the discontinuities progress relatively slowly, resulting in limited researches to include these chemical processes. This research introduces mechanisms the involving coupled thermal-hydraulic-mechanicalchemical processes focusing on the rough fracture surfaces and asperities. The chemically-induced changes in mechanical and hydraulic properties are described based on pressure solution and precipitation concepts. A comprehensive review of laboratory tests, field tests, and numerical simulations is conducted related to the chemically-induced coupled processes in fractured rock. Laboratory tests, in particular, concentrate on microscopic changes in fracture asperities induced by pressure solution to analyze chemically-induced aperture changes. The TOUGHREACT, an integral finite difference method program for thermal-hydraulic-chemical simulations, is generally employed to model the chemical response of pressure solution and precipitation on fracture surfaces. The TOUGHREACT includes a module to describe effective porosity and permeability changes based on the modified cubic law, so the real-time change of the fracture permeability can be reflected during the flow simulation. Considering the coupled thermal-hydraulic-mechanicalchemical processes of discontinuity, it becomes evident that the chemical processes under repository conditions (long-term, high temperature, and high pressure) can disturb the hydraulic performance of the natural barrier, so further research is required to characterize the chemically-induced coupled processes for assessing the long-term performance of the natural barrier system.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Since the first operation of the Gori No. 1 nuclear power plant in Korea was started to operate in 1978, currently 24 nuclear power plants have been being operated, out of which 21 plants are PWR types and the rest are CANDU types. About 30% of total electricity consumed in Korea is from all these nuclear power plants. The accumulated spent nuclear fuels (SFs) generated from each site are temporarily being stored as wet or dry storage type at each plant site. These SFs with their high radiotoxicity, heat generating, and long-lived radioactivity are actually the only type of high-level radioactive waste (HLW) in Korea, which urgently requires to be disposed of in deep geological repository. Studies on disposal of HLW in various kind of geological repositories have been carried out in such countries as Sweden, Finland, United States, and etc. with their own methodologies and management policies in consideration of their situations. In Korea long-term R&D research program for safe management of SF has also been conducted during last couple of decades since around 1997, during which several various alternative type of disposal concepts for disposal of SNFs in deep geological formations have been investigated and developed. The first concept developed was KAERI Reference Disposal System (KRS) which is actually very much similar to Swedish KBS-3, a famous concept of direct disposal of SF in stable crystalline rock at a depth of around 500 m which has been regarded as one of the most plausible method worldwide. The world first Finnish repository which is expected to begin to operate sooner or later will be also this type. Since the characteristics of SF discharged from domestic nuclear reactors have been changed and improved, and burnup has sometimes increased, a more advanced deep geological repository system has been needed, KRS-HB (KRS with High Burnup SF) has been developed and in consideration of the dimensions of SNFs and the cooling period at the time point of the disposal time, KRS+, a rather improved disposal concept has also been subsequently developed which is especially focused on the efficient disposal area. Recently research has concentrated on rather advanced disposal technology focused on a safer and more economical repository system in recent view of the rapidly growing amount of accumulated SF. Especially in Korea the rock mass and the footprint area for the repository extremely limited for disposal site. Some preliminary studies to achieve rather higher efficiency repository concept for disposal of SF recently have already been emphasized. Among many possible ones for consideration of design for high-efficiency repository system, a double-layered system has been focused which is expected to maximize disposal capacity within the minimum footprint disposal area. Based on such disposal strategy a rather newly designed performance assessment methodology might be required to show long-term safety of the repository. Through the study some prerequisites for such methodological development has been being roughly checked and investigated, which covers FEP identification and pathway and scenario analyses as well as preliminary conceptual modeling for the nuclide release and transport in nearfield, far-field, and even biosphere in and around the conceptual repository system. Through the study such scenarios and models has been implemented to development of a safety assessment by utilizing GoldSim development tool for a rough quantitative comparison with existing disposal options and simple illustration purpose as well as for showing how to develop and implementation of the model to GoldSim templet.
        7.
        2023.05 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS) is an indispensable element of a deep geological repository (DGR) designed to prevent the discharge of radioactive materials into the environment. The buffer material is a vital component of the EBS by creating a physical and chemical barrier that prevents the migration of radioactive materials. In the disposal environment, gases can be generated from the corrosion of the canister. When the gas generation rate exceeds the diffusion rate, the buffer material’s performance can deteriorate by the physical damage induced by the increase in pore pressure. Therefore, understanding the EBS’s behavior under gas generation conditions is crucial to guarantee the longterm safety and performance of the DGR. Lab-scale and field-scale experiments have been conducted to examine the stability of the buffer material concerning gas generation and movement by the previous researchers. To evaluate long-term stability for more than 100,000 years, it is essential to assess stability using a numerical model verified by these experiments. This study investigated the effect of interfacial characteristics on the numerical modeling accuracy of experimental simulation while verifying a numerical model through field-scale experimental results. The findings of this study are expected to furnish fundamental data for establishing numerical analysis guidelines for the longterm stability assessment of disposal systems.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Geologic disposal at deep depth is an acceptable way to dispose of high-level radioactive waste and isolate it from the biosphere. The geological repository system comprises an engineered barrier system (EBS) and the host rock. The system aims to delay radionuclide migration through groundwater flow, and also, the flow affects the saturation of the bentonite in the EBS. The thermal conductivity of bentonite is a function of saturation, so the temperature in the EBS is directly related to the flow system. High-temperature results in the two-phase flow, and the two-phase flow system also affects the flow system. Therefore, comprehending the influencing parameters on the flow system is critical to ensure the safety of the disposal system. Various studies have been performed to figure out the complex two-phase flow characteristics, and numerical simulation is considered an effective way to predict the coupled behavior. DECOVALEX (DEvelopment of COupled models and their VALidation against EXperiments) is one of the most famous international cooperating projects to develop numerical methods for thermo-hydro-mechanicalchemical interaction, and Task C in the DECOVALEX-2023 has the purpose of simulating the Fullscale Emplacement (FE) experiment at the Mont-Terri underground research laboratory. We used OGS-FLAC, a self-developed numerical simulator combining OpenGeoSys and FLAC3D, for the simulation and targeted to analyze the effecting parameters on the two-phase flow system. We focused on the parameters of bentonite, a key component of the disposal system, and analyzed the effect of compressibility and air entry pressure on the flow system. Compressibility is a parameter included in the storage term, defining the fluid storage capacity of the medium. While air entry pressure is a crucial value of the water retention curve, defining the relation between saturation and capillary pressure. From a series of sensitivity analyses, low compressibility resulted in faster flow due to low storage term, while low air entry pressure slowed flow inflow into the bentonite. Low air entry pressure means the air easily enters the medium; hence the flow rate becomes lower based on the relativity permeability definition. Based on the sensitivity analysis, we further investigate the effect of shotcrete around the tunnel and excavation damaged zone. Also, long-term analysis considering heat decay of the radioactive waste will be considered in future studies.
        9.
        2023.05 구독 인증기관·개인회원 무료
        As Korea has relatively small land area and large population density compared to other countries considering the DGD concept such as Finland and Sweden, improvements of disposal efficiency in the viewpoint of the disposal area might be needed for the current disposal system to alleviate the difficulties of site selection for the HLW repository. In this research, we conduct a numerical investigation of the disposal efficiency enhancement for a high-level radioactive waste (HLW) repository through three design factors: decay heat optimization, increased thermal limit of buffer, and double-layer concept. In the optimized decay heat model, seven SNFs with the maximum and minimum decay heat depending on actual burn-up and cooling time are iteratively combined in a canister. Thermal limit of buffer is assumed as 100°C and 130°C for reference and high-efficiency repository concepts, respectively. By implementing an optimized decay heat model and a single-layer concept with a thermal limit of buffer set at 100°C, the disposal efficiency increases to 2.3 times of the improved Korean Reference disposal System (KRS+). Additionally, incorporating either an increased thermal limit of buffer to 130°C or a double-layer concept leads to a further 50% improvement in disposal efficiency. By integrating all three design factors, the disposal efficiency can be enhanced up to five times that of the KRS+ repository. Our analysis of rock mass stability reveals that increasing the thermal limit of buffer can generate rock spalling failure in a wider area. However, when accounting for the effect of confining stress by swelling of buffer and backfill using the Mohr-Coulomb failure criteria, the rock mass failure only occurred at the corner between the disposal tunnel and deposition hole when the thermal limit of buffer was increased and a single-layer concept was applied. The results given in this study can provide various options for designing the high-efficiency repository in accordance with the target disposal area and quality of the rock mass in the potential repository site.
        10.
        2022.10 구독 인증기관·개인회원 무료
        Despite the increasing interest in Deep Borehole Disposal (DBD) for its capability of minimizing disposal area, detailed research about DBD operation system design should be conducted before the DBD can be implemented. Recently, DBD operation system applying wireline emplacement (WE) technique is under study due to its high flexibility and capability of minimizing surface equipment. In this study, a conceptual WE system, and operation procdure is introduced. The conceptual WE system consists of 3 main stations, which from the top are hoisting station (HS), canister connection station (CCS) and basement (BS). In HS, WE is controlled and monitored. The WE is controlled using wireline drum winch and sheaves, and load on wireline is measured using a load cell. HS also has a pressure control system (PCS), which monitors internal pressure of the system, and a lubricator, which act as housing for joint device, allowing the joint device to be easily inserted into the borehole. The joint device is used to connect the disposal canister to wireline for emplacement/retrieval. In CCS, a rail transporter brings a transport cask containing disposal canisters, then the transport cask is connected to the hoisting system and a PCS in the BS. The main component located at canister station are a sliding shielding door (SSD), and a slip. The SSD is used to prevent canister from falling into borehole during the connecting operation and prevent radiation from BS to affect the workers. The slip is located beneath the SSD and is used to hold the disposal canister before it is lowered into the borehole. In BS, PCS is installed to prevent overflow and blowout of borehole fluid. The PCS consists of wireline pressure valve, christmas tree and BOP, which all are a type of pressure valve to seal the borehole and release pressure inside the borehole. The WE procedure starts with transporting transport cask to CCS. The transport cask is connected to lubricator, and PCS. Joint device is lowered down to be connected with disposal canisters, then pulled up to check the load on the wireline. After the check-up, SSD is opened, and disposal canister is lowered into the borehole. When desired depth is reached, joint device is disconnected and retrieved for next emplacement. In this study, the conceptual deep borehole disposal system design implementing WE technique is introduced. Based on this study, further detailed design could be derived in future, and feasibility could be tested.
        11.
        2022.10 구독 인증기관·개인회원 무료
        In high-level radioactive waste disposal, a high temperature is generated from the canister containing the waste in the engineered barrier, while groundwater flows into the buffer system from the host rock. The temperature increase and groundwater inflow result in the water phase change and saturation variation. Saturation change is related to the thermal conductivity of buffer material; hence the phase change and saturation strongly interact with the temperature evolution. The complex coupled behavior affects the stability of the whole disposal system, and the security of the repository is critical to human-being life. However, it is difficult to predict the long-term coupled behavior in the disposal system due to the considerable field-test scale, and therefore a numerical simulation is a suitable method having repeatability and cost-effectiveness. DECOVALEX is an international cooperating project for developing numerical methods and models for thermo-hydro-mechanical-chemical (THMC) interaction. DECOVALEX has a four-year cycle with various topics. At the current phase, Task C aims to simulate the full-scale emplacement (FE) experiment performed at Mont Terri underground rock laboratory. Nine research groups are participating in the task, and among them, KAERI simulates the experiment using OGS-FLAC. The simulator combines OpenGeoSys for TH simulation and FLAC3D for M simulation. Through the benchmark simulation, we verified OGS-FLAC for the two-phase flow analysis in the disposal system and finally modeled the FE experiment with a three-dimensional grid. We performed a simple sensitivity analysis to investigate the effect of input parameters on the two-phase flow system and confirmed that the compressibility and permeability affected the flow behavior. We also compared the simulation results to the field data and obtained well-matched results from a series of simulation.
        12.
        2022.10 구독 인증기관·개인회원 무료
        For safety assessment of a high-level radioactive waste disposal system, it is important to predict and analyze the coupled thermo-hydro-mechanical (THM) behaviors of bentonite, which is a buffer candidate material in the engineered barrier system. The Barcelona Basic Model (BBM) is a constitutive model to describe the geomechanical behaviors of partially saturated soils. Complicated tests are required to directly measure BBM parameters of bentonite. In this study, we demonstrate that probable BBM parameters can be sought by calibrating the BBM parameters to match simulation results to observed ones for two kinds of simple tests (swelling pressure test and free swelling test) instead of the complicated direct tests. In the swelling pressure test and free swelling test that were conducted by Japan Atomic Energy Agency (JAEA), water was injected into constrained and unconstrained bentonite core samples, and then swelling pressure and displacements were measured, respectively. We find optimal BBM parameters using a quasi-Newton optimization method that reproduce the observed swelling pressures and displacements in hydro-mechanical simulations. The optimal BBM parameters that are sought in the inversion process can be used to predict the THM behaviors of bentonite barriers in a high-level radioactive waste disposal system.
        13.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A compacted bentonite buffer is a major component of engineered barrier systems, which are designed for the disposal of high-level radioactive waste. In most countries, the target temperature required to maintain safe functioning is below 100°C. If the target temperature of the compacted bentonite buffer can be increased above 100°C, the disposal area can be dramatically reduced. To increase the target temperature of the buffer, it is necessary to investigate its properties at temperatures above 100°C. Although some studies have investigated thermal-hydraulic properties above 100°C, few have evaluated the water suction of compacted bentonite. This study addresses that knowledge gap by evaluating the water suction variation for compacted Korean bentonite in the 25–150°C range, with initial saturations of 0 and 0.22 under constant saturation conditions. We found that water suction decreased by 5–20% for a temperature increase of 100–150°C.
        4,000원
        14.
        2022.05 구독 인증기관·개인회원 무료
        Expansive clays (for examples, bentonites) are favored as buffer and backfill materials because of their low hydraulic conductivity, high swelling potential, and good mechanical properties, and are installed in highly compacted blocks in repositories. Compacted expansive clays have a dual-structure system: macrostructural system which is a complex of clay aggregates with the inter-aggregate pores (macropores) which can be filled by either liquids or gases; microstructural system with the intraaggregate pores between or within clay particles (micropores) which is usually considered to be saturated by liquid. Understanding the dual-strucure system of expansive clays is essential for characterizing and modeling multiphysics (stress-strain, swelling pressure, etc.) in buffers and backfills. Existing multiphysics studies of expansive clays, as in non-expansive soils, were mostly conducted with a single structure approach based on the behavior of macropores, and there have been limitations in the comprehensive interpretation and modeling of experimental results. However, with the recent development of measurement techniques, a lot of available information on the pore structure of compacted expansive clays has been reported, and with the results, a dual-structure approach considering both microstructural and macrostructural systems has been increasingly applied to improve the modeling of multiphysics of expansive clays. This study reviewed the dual-structure system of compacted expansive clays, analyzed previous studies on its evolution according to hydromechanical loading (loading-unloading and wetting-drying paths), and based on these, intended to provide technical knowledge and information needed for multiphysics research of expansive clays-based buffer and backfill for the KRS repository.
        15.
        2022.05 구독 인증기관·개인회원 무료
        Gases such as hydrogen can generate from the disposal canister in high-level radioactive waste disposal systems owing to the corrosion of cooper container in anoxic conditions. The gas can be accumulated in the voids of bentonite buffer around the disposal canister if gas generation rates become larger than the gas diffusion rate of bentonite buffer with the low-permeability. Continuous gas accumulations result in the increase in gas pressure, causing sudden dilation flow of gases with the gas pressure exceeding the gas breakthrough pressure. Given that the gas dilation flow can cause radionuclide leakage out of the engineered barrier system, it is necessary to consider possible damages affected by the radionuclide leakage and to properly understand the complicated behaviors of gas flow in the bentonite buffer with low permeability. In this study, the coupled hydro-mechanical model combined with the damage model that considers two-phase fluid flow and changes in hydraulic properties affected by mechanical deformations is applied to numerical simulations of 1-D gas injection test on saturated bentonite samples (refer to DECOVALEX-2019 Task A Stage 1A). To simulate the mechanical behavior of microcracks which occur due to the dilation flow caused by increase in gas pressure, a concept of elastic damage constitutive law is considered in the coupled hydro-mechanical model. When the TOUGH-FLAC coupling-based model proposed in this study is applied, changes in hydraulic properties affected by mechanical deformations combined with the mechanical damage are appropriately considered, and changes in gas injection pressure, pore pressures at radial filters and outlet, and stress recorded during the gas injection test are accurately simulated.
        16.
        2022.05 구독 인증기관·개인회원 무료
        Discontinuum-based numerical methods can contain the multiple discontinuities in a model and reflect the thermal, hydraulic and mechanical characteristics of discontinuities. Therefore, discontinuum methods can be appropriate to simulate the model which require the detailed analysis of the coupled thermo-hydro-mechanical processes in fractured rock such as geothermal energy, CO2 geo-sequestration, and geological repository of the high-level radioactive waste. TOUGH-3DEC, the three-dimensional discontinuum simulators for the coupled thermo-hydro-mechanical analysis, was developed by linking the integral finite difference method TOUGH2 and the explicit distinct element method 3DEC to describe the coupled thermo-hydro-mechanical processes in both porous media and discontinuity. TOUGH2 handles thermo-hydraulic analysis by the internal simulation module, and 3DEC performs mechanical study based on the constitutive models of porous media and discontinuity with coupling the thermal and hydraulic response from TOUGH2. The thermal and hydraulic couplings are the key processes and should be carefully verified by sufficient cases, so this study performed the thermomechanical and hydro-mechanical simulations which are modelling the analytic solutions including the uniaxial consolidation, fracture static opening, and the heating of a hollow cylinder problems. Each thermo-mechanical and hydro-mechanical verification case is also validated by comparing with the results of the other continuum and discontinuum-based numerical methods. TOUGH-3DEC results follow the analytic solutions and show better accuracy than the continuum-based numerical methods in the static fracture opening problem. The developed TOUGH-3DEC simulator can be expanded to coupled thermo-hydro-mechanical-chemical analysis in fractured rock mass, and the simulator needs to be verified by more complicated coupled processes problems which require in the chemical coupling.
        17.
        2022.05 구독 인증기관·개인회원 무료
        A GoldSim Total System Performance Assessment has been developed and utilized for assessment of the various conceptual HLW repositories for spent nuclear fuels during last a few decades. Even though, almost all required parameter values associated with the repository system are frequently assumed or sometimes overestimated, they are still far from being highly reliable. Uncertainties nested in nuclide transport modeling around the repository are mainly dominated by these parametric uncertainties aside from intrinsic model uncertainty. Reliable estimate of the parameter values commonly expressed as probability density functions (PDFs) always require a large amount of measured data. Such input distributions are used as input to the probabilistic assessment program through Monte Carlo simulation to quantitatively provide possible uncertainty of the results. However, in most cases, especially in the safety assessment of the repository which is typically related with both long-time span and wide modeling domain, inefficient observed data from the field measurements are common, making conventional probabilistic calculations rather even uncertain. Since Bayesian approach is known to be especially powerful and efficient in the case of lacking of available data measured, such short data could be compensated by coupling with a priori belief, reducing uncertainty. By allowing the a priori knowledge for incorporating insufficient observed data, which include expert’ elicitation, their beliefs and judgment regarding the parameters as well as recent site-specific measurements, based on the Bayes’ theorem, the older parameter distributions, “prior” distribution can be updated to a rather newer and reliable “posterior” distribution. Newer distributions are not necessarily expressed as PDFs for probabilistic calculation. These updates could be done even iteratively as many times as data values are sequentially available, which calls sequential Bayesian updating, making belief of posterior distributions become much higher by reducing parametric uncertainty. To show a possible way to enhance the belief as well as to reduce the uncertainty involved in parameter for the Bayesian scheme, nuclide travel length in the far-field area of a hypothetical deep borehole spent fuel Repository was investigated. The algorithm and module that have been developed and implemented in GSTSPA through current study was shown to work well for all assumed prior, three sequential posterior distributions and likelihoods.
        18.
        2022.05 구독 인증기관·개인회원 무료
        To decrease area of the repository for high-level radioactive waste, enhancing the disposal efficiency is needed for public acceptance. Previous studies regarding the performance assessment of KRS and KRS+ repository did not consider area-based variations of the geothermal gradient and rock thermal properties in Korea. This research estimated deposition hole spacing based on performance assessment of a repository using the distribution of geothermal gradient and rock thermal properties in Korea to increase disposal efficiency. Distributions of geothermal gradient, rock thermal properties were investigated based on 2019 Korea geothermal atlas published by Korea Institute of Geoscience and Mineral Resources (KIGAM). Effect of thermal performance parameters was analyzed using coupled thermal-hydraulic numerical simulations, and effect of rock thermal conductivity and deposition hole spacing on the maximum temperature of buffer was relatively large. In addition, distribution maps of thermal performance of a repository and deposition hole spacing were plotted using thermal performance parameters-maximum temperature of buffer regression equations and GIS data given by KIGAM. In the regions showing the highest maximum temperature of buffer in Korea, required deposition hole spacings were 10.5 m, 10.0 m, 10.1 m, respectively for KJ-II, MX-80, and FEBEX bentonite cases, and thereby additional disposal area of 40%, 33.3%, and 34.7% were required compared to that of the KRS+ repository. On the other hand, high disposal efficiency can be obtained in the regions showing the low maximum temperature of bentonite buffer. The methodology provided in this research can be used as one of the references for the selection of domestic candidate repository sites. Additional mechanical performance analysis should be conducted using distributions of mechanical properties of rock mass in Korea.
        19.
        2022.05 구독 인증기관·개인회원 무료
        Geologic disposal of high-level radioactive waste is considered the most effective method to isolate high-level radioactive waste from the biosphere. A high-level radioactive waste repository is designed to be placed at a deep depth and generally consists of canisters, buffer material, and host rock. In the disposal system, the heat from the canister occurs for millions of years due to the long half-life of the high-level radioactive waste, and the heat induces vaporization of groundwater in the buffer material. The resaturation process also occurs due to groundwater inflow from the host rock by the hydraulic head and capillarity. The saturation variation leads to the heat transfer and multi-phase flow in the buffer material, and thermal pressurization of groundwater due to the heat affects the effective stress change in the host rock. The stress change can make the porosity and permeability change in the flow system of the host rock, and the flow system affects the nuclide migration to the biosphere. Therefore, it is crucial to understand the complex thermo-hydro-mechanical-chemical (THMC) coupled behavior to secure the repository’s long-term safety. DECOVALEX is an international cooperating project to develop numerical methods and models for predicting the THMC interactions in the disposal systems through validation and comparison with test results. In Task C of DECOVALEX-2023, nine participating groups (BGR, BGE, CAS, ENSI, GRS, KAERI, LBNL, NWMO, Sandia) models the full-scale emplacement (FE) experiments at the Mont Terri underground rock laboratory and focus on understanding pore pressure development, heat transfer, thermal pressurization, vaporization and resaturation process in the disposal system. In the FE experiment, three heaters generated heat with constant power for five years at a 1:1 scale in the emplacement tunnel based on Nagra’s reference repository design. KAERI used OGS-FLAC3D for the numerical simulation, combining OpenGeoSys for TH simulation and FLAC3D for M simulation. We generated a full-scale three-dimensional numerical model with a dimension of 100 by 100 by 60 meters. The pressure and temperature distribution were well simulated with the host rock's anisotropy. Based on the capillarity, we observed vaporization and resaturation in the bentonite under the twophase flow system. We plan to compare the simulation results with the field data and investigate the effect of input parameters, including thermal conductivity and pore compressibility affecting the thermal and flow system.
        20.
        2022.05 구독 인증기관·개인회원 무료
        The International Atomic Energy Agency recommends the deep geological disposal system as one of the disposal methods for high-level radioactive waste (HLW), such as spent nuclear fuel. The deep geological disposal system disposes of HLW in a deep and stable geological formation to isolate the HLW from the human biosphere and restrict the inflow of radionuclides into the ecosystem. It mainly consists of an engineered barrier and a natural barrier. Safety evaluation using a numerical model has been performed primarily to evaluate the buffer’s long-term stability. However, although the gas generation rate input for long-term stability evaluation is the critical factor that has the most significant influence on the long-term hydraulic-mechanical behavior of the buffer, in-depth research and experimental data are lacking. In this study, the gas generation rate on the interface between the disposal canister and the buffer material, a component of the engineered barrier, was mainly studied. Gas can be generated between the disposal canister and the buffer material due to various causes such as anaerobic corrosion of the disposal canister metal, organic matter decomposition, radiation decomposition, and steam generation due to high temperature. The generation of gas in such a disposal environment increases the pore gas pressure in the buffer and causes internal cracks. The occurred cracks increase the intrinsic permeability of the buffer, which leads to a decrease in the primary performance of the buffer. For this reason, it is essential to apply the appropriate gas generation rate according to the disposal condition and buffer material for accurate long-term stability analysis. Therefore, the theoretical models regarding the estimation of gas generation were summarized through a literature study. The amount of gas generated was estimated according to the disposal environment and material of the disposal canister. It is expected that estimated values might be used to estimate the long-term stability analysis of buffer performance according to the disposal condition.
        1 2 3