검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mushroom mites have recently caused severe damage to sawdust beds, mushroom mycelia, and fruiting bodies; therefore, they have reduced the production of the button mushroom, Agaricus bisporus, in greenhouses. There are currently no registered pesticides for mushroom mites. It is necessary to selectively control mushroom flies and mites without affecting the growth of the mushroom. We examined biological control of mushroom mites using predatory mite Stratiolaelaps scimitus in button mushroom cultivation. As a result, a three times treatment (1 treatment after water cleaning, 1 treatment after fungus inoculation, and 1 treatment before or after casing) was most effective at controlling mushroom mites, with 3.000 predatory mites (3 bottles) scattered evenly over 165–230 ㎡ every 1–2 m. Predatory mite Stratiolaelaps scimitus could control mushroom flies and mites at the same time and could be used at any time during cultivation.
        4,000원
        2.
        2013.10 구독 인증기관·개인회원 무료
        A phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared to a wild type primary form, a secondary form usually lose several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in production of eicosanoid-biosynthesis inhibitors (EBIs) compared to the primary form of X. nematophila. Production of oxindole and p-hydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on a cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila significantly more enhanced the pathogenicity of Bacillus thuringiensis (Bt) than the culture broth of the secondary form. Furthermore, this study developed a high efficient ‘Dual Bt-Plus’ to control both lepidopteran insect pests of Plutella xylostella and Spodoptera exigua by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.