검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.05 구독 인증기관·개인회원 무료
        Forest fires produce various particulate organic matters (POMs) derived from the incomplete combution process of biomass. The POMs deposited in soil and sediments can affect the physicochemical properties of the subsurface environments. This study investigated the sorption and transport behavior of cesium (Cs) in soil-groundwater environment after wildfire. Soil samples were collected at two locations (GS1 & GS2) in Gangwon Province, Korea, at different depths (~5, ~20, and ~40 cm). The sampling site, where a large-scale forest fire occurred in 2017, was damaged almost 252 ha of forest. The soil characteristics were determined by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), total organic carbon (TOC) analysis and organic petrography, and batch and fixed-bed column experiments were performed to evaluate the Cs uptake and retardation. The XRD patterns of the soils indicated that the mineral compositions of soils were quartz, feldspars (e.g., orthoclase & albite) with minor muscovite/illite. Quartz and feldspars were abundant in all studied soils, and GS2 sample contained higher feldspars and phyllosilicate minerals than the GS1. The TOC contents were high (7–8wt%) in the topsoils, decreasing with depth. The SEM and organic petrographic analyses showed that various organic carbon particles such as textinite, ulminite, fusinite (charcoal) and char existed. Presence of charcoal and char is the evidence of wildfires, even though their amount was few. Batch sorption experiments revealed that the Kd value decreased non-linearly as the Cs concentrations increased, and the sorption isotherms were fitted well with the Freundlich model. The Kd values of each soil were much greater in topsoils compared to subsoils at all experimental Cs concentrations. In particular, the GS1 topsoil had higher sorption capacity for cesium than GS2 subsoils, although it had low phyllosilicate mineral contents with realtively rich organic matter. The breakthrough curve of column experiments with high concentration (C0 ≈ 1×105 μg·L−1) also exhibited remarkable Cs retardation phenomena in topsoils. Their retardation factors (Rf,Cs) were max. 4 times greater than those of subsoils, showing Rf,Cs ≈ 43 to 45 for topsoils. At low concentration (C0 ≈ 1×104 μg·L−1), the Rf,Cs of topsoils (≈ 284 to 374) was slightly greater than that of subsoils (≈ 270 to 271). These results imply that POMs caused by wildfires can play important role on the Cs sorption and transport in the subsurface environments.
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.
        4,300원