검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2016.10 구독 인증기관·개인회원 무료
        Monochamus saltuarius is one of the insect vector of pine wilt disease with Monochamus alternatus. The present study aimed to investigate the dose to induce sterile and the effect of sterility according to the gender of M. saltuarius. As the electron beam irradiation dose increased, the hatchability, adult eclosion rate and longevity of the former mid and late maturation feeding stage of adults was slightly reduced. However, there was no difference between these two adults. In addition, female adults were more sensitive to the electron beam than the male adults. Hatchability of the F1 generation of ♂T × ♀N o r♀T × ♂N (T: 200 Gy electron beam irradiation, N: 0 Gy) was completely suppressed. As electron beam irradiation dose increased, the fecundity of female adults were slightly decreased. Results by comet assay showed that electron beam irradiation induced as dose increased DNA damage in M. saltuarius adults. These results suggest that SIT using electron beam may be useful for control of M. saltuarius.
        3.
        2021.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite’s orbit in terms of the maximum duration the satellite’s station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.