검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        2.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-bylayer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.
        4,000원
        3.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/ s and a layer thickness of 25 μm. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4%, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.
        4,000원
        5.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder injection molding is an important manufacturing technology to mass produce superalloy components with complex shape. Injection molding step is particularly important for realizing a desired shape, which requires much time and efforts finding the optimum process condition. Therefore computer aided engineering can be very useful to find proper injection molding conditions. In this study, we have conducted a finite element method based simulation for the spiral mold test of superalloy feedstock and compared the results with experimental ones. Sensitivity analysis with both of simulation and experiment reveals that the melt temperature of superalloy feedstock is the most important factor for the full filling of mold cavity. The FEM based simulation matches well the experimental results. This study contributes to the optimization of superalloy powder injection molding process.
        4,000원
        6.
        2006.08 KCI 등재 서비스 종료(열람 제한)
        Boseogchal is a newjaponica rice cultivar developed from the three-way cross ofHwayoung, Tamjin and Sinseonchalat Honam Agricultural Research Institute (HARI), RDA, in 2004. It is a waxy rice with about 117 days of growth duration fromtransplanting to har
        7.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        The genetic basis underlying heterosis for agronomic traits of rice under cold water irrigated field condition was investigated in the 143 RILs and 286 BC1F1 lines from the cross between a cold-susceptible variety, Milyang23 and a co
        8.
        2003.08 KCI 등재 서비스 종료(열람 제한)
        Mihyangbyeo, a new japonica aromatic rice (Oryza sativa L.) was developed by National Honam Agricultural Experiment Station (NHAES), RDA in 1998. It was derived from the three-way cross among Seomjinbyeo of the disease resistance and high yielding lines,
        9.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        An efficient system of rice microspore culture could contribute to the production of genetically modified rice. The microspores were isolated by mechanical or shed methods. The number of microspores per 100 anthers isolated at uninucleate stage was higher than (or similar to) those at binucleate stage in isolation method with pestle or spatular, but microspore divisions were not easily observed on both stages. On the other hand, pollen division in shed pollen culture was observed more frequently at uninuclear than at binuclear stage. Cold pretreatment at 10~circC for 10 days resulted in the best multicellular division to produce microcalli at 12.5% efficiency in shed microspores. Heat shock at 33~circC for one hour before or after pollen shedding enhanced cell division and callus formation. Out of twelve green regenerants, two were haploids and ten were diploids based on the chromosome analysis of root tips. The size of stoma was 12m m in haploids and 15 ~mu~textrmm in diploids determined by scanning electron microscope (SEM).