검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 488

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the risk of single and combined exposure to microplastics in zebrafish (Danio rerio) through biomarkers, such as survival rate, excretion rate, and histological alterations of organ systems. The experimental groups were the control (Cont.), single microplastics exposure group (MPs, 1.83%/fish total weight (g)), the copper group (Cu, 21.6 μg L-1), and a group with combined exposure to MPs and copper (MPs*Cu). The experiment was conducted with individual exposure (7 days) for MP excretion rate analysis and group exposure (14 days) for biomarker analysis. The daily excretion rate of MPs tended to decrease in a time-dependent manner. The copper concentration in the body was not significantly different between single and combined copper exposure. The degeneration of mucous cells in the skin, capillary dilation of the gill lamella, increased intestinal mucous, hepatocyte hypertrophy, and the degeneration of glomeruli and renal tubules were observed in all exposure groups. These histological alterations showed the highest tendency in the MPs*Cu group. In this study, the changes in biomarkers were attributed to the single effect of copper or the combined effect of copper and MPs rather than being solely influenced by MPs.
        4,600원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
        4.
        2023.11 구독 인증기관·개인회원 무료
        In the nuclear fuel cycle (NFC) facilities, the failure of Heating Ventilation and Air Conditioning (HVAC) system starts with minor component failures and can escalate to affecting the entire system, ultimately resulting in radiological consequences to workers. In the field of air-conditioning and refrigerating engineering, the fault detection and diagnosis (FDD) of HVAC systems have been studied since faults occurring in improper routine operations and poor preventive maintenance of HVAC systems result in excessive energy consumption. This paper aims to provide a systematic review of existing FDD methods for HVAC systems therefore explore its potential application in nuclear field. For this goal, typical faults and FDD methods are investigated. The commonly occurring faults of HVAC are identified through various literature including publications from International Energy Agency (IEA) and American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). However, most literature does not explicitly addresses anomalies related to pressure, even though in nuclear facilities, abnormal pressure condition need to be carefully managed, particularly for maintaining radiological contamination differently within each zone. To build simulation model for FDD, the whole-building energy system modeling is needed because HVAC systems are major contributors to the whole building’s energy and thermal comfort, keeping the desired environment for occupants and other purposes. The whole-building energy modeling can be grouped into three categories: physics-based modeling (i.e., white-box models), hybrid modeling (i.e., grey-box models), and data-driven modeling (i.e., black-box models). To create a white-box FDD model, specialized tools such as EnergyPlus for modeling can be used. The EnergyPlus is open source program developed by US-DOE, and features heat balance calculation, enabling the dynamic simulation in transient state by heat balance calculation. The physics based modeling has the advantage of explaining clear cause-and-effect relationships between inputs and outputs based on heat and mass transfer equations, while creating accurate models requires time and effort. Creating a black-box FDD model requires a sufficient quantity and diverse types of operational data for machine learning. Since operation data for HVAC systems in existing nuclear cycle facilities are not fully available, so efforts to establish a monitoring system enabling the collection, storage, and management of sensor data indicating the status of HVAC systems and buildings should be prioritized. Once operational data are available, well-known machine learning methods such as linear regression, support vector machines, random forests, artificial neural networks, and recurrent neural networks (RNNs) can be used to classify and diagnose failures. The challenge with black-box models is the lack of access to failure data from operating facilities. To address this, one can consider developing black-box models using reference failure data provided by IEA or ASHRAE. Given the unavailability of operation data from the operating NFC facilities, there is a need for a short to medium-term plan for the development of a physics-based FDD model. Additionally, the development of a monitoring system to gather useful operation data is essential, which could serve both as a means to validate the physics-based model and as a potential foundation for building data-driven model in the long term.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The presence of organic components in spent scintillation liquid should be considered during all steps of radioactive waste processing for final disposal. Scintillation liquids often referred to as cocktails are generated form radiochemical analyses of radionuclides, which mainly consists of mixtures of liquid organic materials such as toluene and xylene. Typical features of these liquid organic materials are volatility, combustibility and toxicity. These are the reason why special attention must be paid to the management of liquid organic radioactive wastes. To select an appropriate waste management strategy and to design the treatment process of spent scintillation cocktails, it is required to investigate the nature of the waste such as specific radioactivity and moisture content. The analysis results of spent scintillation liquid generated at Wolsong nuclear power plants will be discussed. An overview of the technical approaches available for the treatment of organic radioactive waste will be additionally provided.
        6.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        7.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        8.
        2023.11 구독 인증기관·개인회원 무료
        Molten salt reactor (MSR) uses fluoride or chloride based molten salt as a coolant of the system, and fuel materials are dissolved in the molten salt, therefore it can be act as both coolant and nuclear fuel. A few issues have arisen from early-stage research and development program of MSR from Oak Ridge National Laboratory, including corrosion of structural materials and fission product management. For investigating the effect of additives on corrosion of structural materials, Mg(OH)2 and MgCl2*6H2O are added into the NaCl-MgCl2 eutectic salt. Prepared chloride salt is injected into the autoclave in the glove box, as well as corrosion coupons for candidate structural materials for molten chloride salt reactor, SS316, Alloy 600, and C-276 are also prepared. The temperature is set as 700°C. After 500 h corrosion experiment, the samples are taken out from the autoclave, and they are analyzed with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SS316 samples show weight loss with all salt conditions, while Alloy 600 and C-276 show weight gain after the corrosion experiment.
        9.
        2023.10 구독 인증기관·개인회원 무료
        During the larval development process of insects, juvenile hormone (JH) is essential for regulating various aspects of larval life, including growth, reproduction, and behavior, throughout their larval stage. The larval stage of Spodoptera frugiperda, when it consumes plant-derived metabolites, develops into pupae, but these pupae are unable to molt successfully. In this way, plant-derived metabolites contain or produce inhibitors of juvenile hormone, thereby disrupting the development of insect larvae and making them vulnerable to harm. Therefore, in this study, we established an in vitro screening system using yeast cells transformed with the Met-SRC juvenile hormone receptor of S. frugiperda. Through this system, we were able to identify juvenile hormone disruptors from plant-derived metabolites and confirm their developmental inhibitory effects on the larvae of S. frugiperda.
        10.
        2023.10 구독 인증기관·개인회원 무료
        기존에는 생산되는 키틴과 키토산의 대부분이 게, 새우등 갑각류 껍질에서 유래하였다. 하지만 어업에 의존하 는 기존 갑각류 비해 친환경적이며 품질 유지에 이점을 가지는 곤충으로부터 유래한 키틴이 최근 주목 받기 시작 하며 연구가 활발해지고 있다. 이에 키토산이 남조류의 응집을 통해 녹조 제거 효과를 가지며 기존에 녹조를 억제하기 위해 널리 사용되던 살조제들이 독성을 띠어 환경에 악영향을 미치는 문제를 해결할 수 있다는 연구를 참고하여 매미 탈피각으로부터 추출한 키토산을 녹조 방제에 활용해 보고자 하였다. 매미 탈피각으로부터 키토 산을 추출하고 대표적인 녹조 원인종인 Microcystis aeruginosa 배양 후 추출한 키토산을 처리하여 녹조의 응집 효과를 관찰하였다. 본 연구에서 새로운 키토산 추출 원으로서 매미 탈피각의 가능성을 제시하였으며 이를 녹조 방제에 활용함으로써 버려지는 자원인 매미 탈피각의 활용 방안을 제시하였다.
        12.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Buckwheat (Fagopyrum esculentum), which is a traditional Korean crop, has been known as a health food due to its rich nutrition. This study was conducted to evaluate the change in flavonoid content of flowers and seeds during post-flowering growth of Korean tartary buckwheat variety ‘Hwanggeummiso’, with the aim of providing basic data for the development of functional food and feed additive. Tartary buckwheat took 69 and 99 days from the sowing date to reach the flowering and maturity stages, respectively. As a result of examining the flavonoid components of each part of tartary buckwheat, chlorogenic acid, rutin, and isoquercitrin of flowers increased from the flowering period on 22 May (0 days after flowering) to 42 days after flowering, while quercetin increased until 21 days after flowering and then decreased thereafter. In seeds, chlorogenic acid, rutin, and isoquercitrin were most abundant at the time of seed-bearing on 14 days after flowering, and showed a decreasing tendency thereafter. On the other hand, quercetin showed a tendency to increase until 21 days after flowering and then decrease. Overall, the flavonoid content was higher in flowers than in seeds, with rutin being particularly prominent. Based on this, the possibility as food materials and feed additives was confirmed using buckwheat produced in Korea.
        4,000원
        13.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated ethopabate (EPB) residues in edible tissues of broiler chickens given in drinking water and established the withdrawal time (WT) of EPB in poultry tissues. Twenty-four healthy Ross broiler chickens were orally administered with EPB at the concentration of 3.8 mg/L for 14 days (EPB-1, n=24) and 15.2 mg/L for 7 days (EPB-2, n=24) through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3, and 5 days, respectively. EPB residue concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient values ranged from 0.9980 to 0.9998, and the limits of detection and quantification (LOQ) were 0.03~0.09 and 0.1~0.3 μg/kg, respectively. Mean recoveries in muscle, liver, kidney and skin/fat tissues were 95.9~109.8, 108.7~115.3, 89.9~96.6 and 86.7~96.8%, respectively, and coefficient of variations were less than 17.11%. At the end of the drug-administration period (0 day), EPB was detected at levels under the LOQ in all tissues from both the EPB-1 and EPB-2 groups. According to the results of EPB residue in Ross broiler tissues, withdrawal periods of both EPB-1 and EPB-2 in poultry tissues were established to 0 day. In conclusion, the developed analytical method is suitable for the detection of EPB in poultry tissues, and the estimated WT of EPB in poultry tissues will contribute to ensuring the safety of Ross broiler chickens.
        4,000원
        14.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As platforms become primary decision making tools, platforms for decision have been introduced to improve quality of decision results. Because, decision platforms applied augmented decision-making process which uses experiences and feedback of users. This process creates a variety of alternatives tailored for users’ abilities and characteristics. However, platform users choose alternatives before considering significant quality factors based on securing decision quality. In real world, platform managers use an algorithm that distorts appropriate alternatives for their commercial benefits. For improving quality of decision-making, preceding researches approach trying to increase rational decision -making ability based on experiences and feedback. In order to overcome bounded rationality, users interact with the machine to approach the optional situation. Differentiated from previous studies, our study focused more on characteristics of users while they use decision platforms. This study investigated the impact of quality factors on decision-making using platforms, the dimensions of systematic factors and user characteristics. Systematic factors such as platform reliability, data quality, and user characteristics such as user abilities and biases were selected, and measuring variables which trust, satisfaction, and loyalty of decision platforms were selected. Based on these quality factors, a structural equation research model was created. A survey was conducted with 391 participants using a 7-point Likert scale. The hypothesis that quality factors affect trust was proved to be valid through path analysis of the structural equation model. The key findings indicate that platform reliability, data quality, user abilities, and biases affect the trust, satisfaction and loyalty. Among the quality factors, group bias of users affects significantly trust of decision platforms. We suggest that quality factors of decision platform consist of experience-based and feedback-based decision-making with the platform's network effect. Through this study, the theories of decision-making are empirically tested and the academic scope of platform-based decision-making has been further developed.
        4,600원
        15.
        2023.07 구독 인증기관·개인회원 무료
        Over the past decade, in-feed native advertising has become one of the most popular forms of online advertising, attracting attention from both academia and industry. Compared to traditional online ads, in-feed native ads are less intrusive and have more engaging content, effectively reducing users' tendency to avoid ads and improving advertising effectiveness. Despite existing review studies, most of them focus on specific aspects of in-feed native advertising, such as ad identification, disclosure, or regulation, and lack an overview of the relevant literature. Moreover, with the diversified development of digital media forms, the widespread application of AI technologies, and the improvement of consumers' ad literacy, in-feed native ad research faces new issues and practical challenges. Thus, a systematic review of existing research is necessary to identify valuable future research directions.
        16.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for amprolium (APL) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with APL at the concentration of 60 mg/L (APL-1, n=24) for 14 days and 240 mg/L (APL-2, n=24) for 7 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3 and 5 days, respectively. Residual APL concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient (0.99 >), the limits quantification (LOQ, 0.3~5.0 μg/kg), recoveries (81.5~112.4%), and coefficient of variations (<15.5%) were satisfied the validation criteria of Korean Ministry of Food and Drug Safety. In APL-1, APL in all tissues except for kidney was detected less than LOQ at 3 days after drug treatment. In APL-2, APL in liver and kidney was detected more than LOQ at 5 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of APL-1 and APL-2 in poultry tissues were established to 3 and 2 days, respectively. In conclusion, the developed analytical method is sensitive and reliable for detecting APL in poultry tissues. The estimated WT of APL in poultry tissues is longer than the current WT recommendation of 2 days for APL in broiler chickens.
        4,000원
        17.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 신생아 검사 중 포수클로랄(chloral hydrate)을 투여 후 진행되는 신생아 진정 검사 대비 진정 대체 방식 중 하나인 피드 및 랩(feed and wrap) 방식의 유용성을 평가한 연구이다. 본 연구에선 진정으로 진행한 신생아의 두뇌 T2 축면 영상과 피드 및 랩 방식으로 진행한 같은 영상 각 30개의 운동 허상(motion artifact)과 백질과 회백질의 구분 정도를 두 명의 영상의학과 전문의가 정성적으로 평가하였고, 운동 허상을 측정하기 위해서 위상부호화(phase encoding) 방향의 배경 영역(background area)의 평균 신호 강도(mean signal intensity)를 구하여서 정량적 방식으로 평가하였다. 또한 총검사 시간을 정리한 뒤 정량적 방식으로 평가하였고 투약 기록의 여부와 간호일지를 토대로 피드 및 랩 방식의 총 39건의 검사 건수 대비 성공률을 측정하였다. 운동 허상의 정량적 평가와 영상 품질의 정성적 평가 모두에서 두 집단은 유의미한 차이가 없었으나, 검사 시간의 정량적 평가에선 p값이 0.001로 유의한 차이가 있었다. 피드 및 랩 방식의 총검사 건수 대비 성공률은 100%였다. 결론적으로 본 논문에선 피드 및 랩 방식과 진정 방식의 영상 품질이 유의한 차이가 없고 성공률이 높기에 유용하다고 판단하였으나, 검사 시간이 더 지연되는 한계가 있다는 사실을 확인하였다.
        4,000원
        18.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbons are considered promising for CO2 capture due to their high-pressure capture performance, high chemical/ thermal stability, and low humidity sensitivity. But, their low-pressure capture performance, selectivity toward CO2 over N2, and adsorption kinetics need further improvement for practical applications. Herein, we report a novel dual-templating strategy based on molten salts (LiBr/KBr) and hydrogen-bonded triazine molecules (melamine–cyanuric acid complex, MCA) to prepare high-performance porous carbon adsorbents for low-pressure CO2. The comprehensive investigations of pore structure, microstructure, and chemical structure, as well as their correlation with CO2 capture performance, reveal that the dual template plays the role of porogen for multi-hierarchical porous structure based on supermicro-/micro-/meso-/ macro-pores and reactant for high N/O insertion into the carbon framework. Furthermore, they exert a synergistic but independent effect on the carbonization procedure of glucose, avoiding the counter-balance between porous structure and hetero-atom insertion. This enables the preferred formation of pyrrolic N/carboxylic acid functional groups and supermicropores of ~ 0.8 nm, while retaining the micro-/meso-/macro-pores (> 1 nm) more than 60% of the total pore volume. As a result, the dual-templated porous carbon adsorbent (MG-Br-600) simultaneously achieves a high CO2 capture capacity of 3.95 mmol g− 1 at 850 Torr and 0 °C, a CO2/ N2 (15:85) selectivity factor of 31 at 0 °C, and a high intra-particle diffusivity of 0.23 mmol g− 1 min− 0.5 without performance degradation over repeated use. With the molecular scale structure tunability and the large-scale production capability, the dual-templating strategy will offer versatile tools for designing high-performance carbon-based adsorbents for CO2 capture.
        4,300원
        19.
        2023.05 구독 인증기관·개인회원 무료
        Some consumer goods containing radioactive substances are in circulation and used in everyday life. In accordance with the Nuclear Safety Act, consumer goods with radioactivity are regulated. However, since most consumer goods distributed in Korea have no information that can confirm the amount of radiation, it is necessary to analyze the radiation for safety regulation. Among these consumer goods, GTLS (Gaseous Tritium Light Source) contains gaseous tritium (tritium, written as 3H or T), which is a radioactive material. The gaseous composition ratio in GTLS was analyzed using a precision gas mass spectrometer (Thermo Fisher, model MAT 271). As a result of GTLS analysis, the H2, HD or H3 +(T) or 3He, HT or D2 or He, DT, and T2, which correspond to the mass-to-charge ratio (m/z) 2 to 6 and the air components were detected. In addition, substances corresponding to m/z=24 and m/z=21 were also detected. These were compared with pure CH4 and those fragmentation patterns. The ratios of CT4 (m/z = 24) to CT3 (m/z = 21) and CH4 (m/z = 16) to CH3 (m/z = 15) were compared and they agree within the measurement uncertainty. We also performed additional experiments to separate the water component in the GTLS samples, considering the possibility that the m/z = 21 to m/z = 24 region is tritium compounds based on H2O. Despite the removal of the water components, peaks were detected at m/z=21 and m/z=24. Therefore, we confirmed that the component of m/z = 24 in the GTLS sample was CT4.
        20.
        2023.05 구독 인증기관·개인회원 무료
        The 2007 Recommendation of the International Commission on Radiological Protection recommended the application of dose constraints to optimize radiation protection to resolve the inequity of exposure among radiation workers. The average annual occupational doses in Korean nuclear power plants (NPPs) are 0.3-0.8 mSv. These doses are much lower than the annual effective dose limit of 50 mSv for radiation workers stipulated by the Nuclear Safety Act. In addition, most NPP workers received less than 0.1 mSv per year. These doses are lower than the average annual occupational doses of 0.3- 0.8 mSv. Korean regulatory body conducted the study to legislate the dose constraints in the Korean regulatory system and determine dose constraints (draft) for radiation workers. The legislation of dose constraints would not greatly affect the radiation protection programs in Korean NPPs because most workers received very low doses. However, some workers received relatively higher doses than others. This study analyzed the occupational exposure conditions, such as exposure type and situation, in Korean NPPs. This study investigated the internal and external radiation doses and the radiation doses depending on the NPP operating conditions, including normal operation, planned maintenance, and intermediate maintenance, for the last ten years (2012-2021). As a result, most NPP workers received external exposure rather than internal exposure. Furthermore, most radiation exposures occurred during the planned maintenance period. The results of this study can be used for optimizing occupational doses in Korean NPPs.
        1 2 3 4 5