검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        In pyroprocessing, the residual salts (LiCl containing Li and Li2O) in the metallic fuel produced by the oxide reduction (OR) process are removed by salt distillation and fed into electrorefining. This study undertook an investigation into the potential viability of employing a separate LiCl salt rinsing process as an innovative alternative to conventional salt distillation techniques. The primary objective of this novel approach was to mitigate the presence of Li and Li2O within the residual OR salt of metallic fuel, subsequently facilitating its suitability for electrorefining processes. The process of rinsing the metallic fuel involved immersing it in a LiCl salt environment at a temperature of 650°C. During this immersion process, the residual OR salt contained within the fuel underwent dissolution, thereby reducing the concentrations of Li2O and Li generated during the OR process. Furthermore, the Li and Li2O dissolved within the LiCl salt were effectively consumed through chemical reactions with ZrO2 particles present within the salt. Importantly, even after the metallic fuel had been subjected to rinsing in a conventional LiCl salt solution, the concentration of Li and Li2O within the salt remained consistent with its initial levels, due to the utilization of ZrO2. Moreover, it was observed that the Li- Li2O content within the metallic fuel was significantly diluted as a result of the rinsing process.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Pyroprocessing is a promising technique for the treatment of damaged fuel debris (corium) generated by severe nuclear accidents. The debris typically consists of (U, Zr)O2 originating from the UO2 fuel and Zr alloy-based cladding. By converting the corium to a metallic form, the principal components of the fuel can be recovered through subsequent electrorefining, allowing for long-term storage or final disposal. A study investigated the reduction of zirconium oxide compounds by Li metal as a reductant in molten LiCl salt. This research explored the feasibility of treating damaged nuclear fuel debris, which mainly consists of (U, Zr)O2. The results showed that ZrO2 was successfully reduced to Zr metal by Li metal in LiCl salt at 650C without the formation of Li2ZrO3. In particular, Zr metal was produced without the formation of Li2ZrO3 when LiCl salt containing a high concentration of Li metal was used. However, Zr metal was produced with Li2ZrO3 when LiCl salt containing both Li metal and Li2O was added. This suggests that the concentration of Li metal in the LiCl salt is an important factor in determining the formation of Li2ZrO3. The study also demonstrated that Li2ZrO3 was partially reduced to Zr metal by Li metal in LiCl salt. This finding suggests that Li metal may be effective in reducing other oxide compounds in molten LiCl salt, which could be useful in the treatment of corium. Overall, the research provides valuable insights into the feasibility of using pyroprocessing for the treatment of corium. The ability to recover and store the principal components of the fuel through electrorefining could have important implications for the long-term management of nuclear waste.