검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        A lot of solid wastes are generated when nuclear power plant is dismantled, and a lot of treatment costs and optimal waste treatment technologies are required to treat the generated solid wastes. Currently, there is no optimized reduction and solidification technology for each characteristics of radioactive dismantling waste, so the customized treatment technology for each waste is required to respond actively to this issue. This paper shows the evaluation results of molding and sintering characteristics using preliminary sample to derive operational characteristics and improvements for powder mixing device, molding device, and sintering device manufactured for solidification of dispersible radioactive waste. Zeolite was used as a preliminary sample for performing basic operation characteristics evaluation of each unit device. First of all, the basic operation characteristics of the powder mixing device was evaluated by analyzing the sample distribution, mixing degree, and tap density. It was confirmed that the preliminary sample was well mixed in all areas of the cylinder where the mixing was performed. In the tap density analysis, the increase effect of the volume reduction of the sample was confirmed according to the increase of the RPM speed (up to 2000 RPM). Since the particle size of zeolite sample is very small (nanometer size), the particular consistency of the change of average particle size with RPM speed couldn’t be confirmed, but the uniform of particle size distribution was confirmed with RPM speed size. The basic operation characteristics of the molding device was evaluated for each mold size (ID30, ID50, ID100) according to the moisture content (0-20%) and the molding pressure condition (25-200 MPa) for the preliminary sample. In the characteristics evaluation of the sintered body, the strength of the sintered body was much higher than that of the molded body. However, it was confirmed that as moisture evaporated during the sintering process according to the moisture content contained in the molded body, the swelling occurred in the sintered body due to vapor pressure, and this caused cracks in the longitudinal or transverse direction inside and outside the sintered body. Therefore, optimal moisture content conditions for sintering should be derived. In conclusion, if the operation characteristics and improvements of powder mixing, molding and sintering devices derived from this study are reflected and improved, it is judged that it is possible to derive the optimal process for solidification of dispersive radioactive wastes.