검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGHFLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young’s modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young’s modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.
        5,400원
        2.
        2022.10 구독 인증기관·개인회원 무료
        Montmorillonite plays a key role in engineered barrier systems in the high-level radioactive waste repository because of its large sorption capacity and high swelling pressure. However, the sorption capacity of montmorillonite can be largely varied dependent on the surrounding environments. This study conducted the batch simulation for U(VI) sorption on Na-montmorillonite by utilizing the cation exchange and surface complexation coupled (2SP-NE-SC/CE) model and evaluated the effects of physicochemical properties (i.e., pH, temperature, competing cations, U(VI) concentration, and carbonate species) on U(VI) sorption. The simulation demonstrated that the U(VI) sorption was affected by physicochemical properties: the pH and temperature relate to aqueous U(VI) speciation, the competing cations relate to the cation exchange process and selectivity, the U(VI) concentration relates to saturation at sorption sites. For example, the Kd (L kg−1) of Na-montmorillonite represented the largest values of 2.7×105 L kg−1 at neutral pH condition and had significantly decreased at acidic pH<3, showing non-linear and diverse U(VI) sorption at the ranged pH from 2 to 11. Additionally, the U(VI) sorption on montmorillonite significantly decreased in presence of carbonate species. The U(VI) sorption for long-term in actual porewater chemistry and temperature of high-level radioactive waste repository represented that the sorption capacity of Na-montmorillonite was affected by various external properties such as concentration of competing cation, temperature, pH, and carbonate species. These results indicate that geochemical sorption capacity of bentonite should be evaluated by considering both geological and aquifer environments in the high-level radioactive waste repository.