검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 100

        1.
        2023.11 구독 인증기관·개인회원 무료
        The development of separation method of radioactive tritium is imperative for treating tritiumcontaminated water originating from nuclear facilities. Polymer electrolyte membrane electrolysis technology represents a promising alternative to conventional alkaline electrolysis for tritium enrichment. Nevertheless, there has been limited research conducted thus far on the composition of membrane electrode assemblies (MEAs) specifically optimized for tritium separation, as well as the methods used for their fabrication. In this study, we conducted an investigation aimed at optimizing MEAs specifically tailored for tritium separation. Our approach involved the systematic variation of MEA components, including the anode, cathode, porous transport layer, and electrode formation method. The water electrolysis efficiency and the H/D separation factor in deuterated water (1%) were evaluated with respect to both the preparation method and the composition of the MEA. To assess the long-term stability of the MEAs, changes in cell voltage, resistance, and the active electrode area were analyzed using impedance analysis and cyclic voltammetry. Furthermore, we examined H/D separation factor both before and after degradation. The results showed that MEAs with different anode/cathode configurations and electrode formation methods improved the electrolysis efficiency compared to commercial MEAs. In addition, the degree of change in the resistance value was also different depending on the electrode formation method, indicating that the electrode formation method has a significant impact on the stability of the electrolysis system. Therefore, the study showed that the efficiency and long-term stability of the water electrolzer can be improved by optimizing the MEA fabrication method.
        2.
        2023.05 구독 인증기관·개인회원 무료
        For decontamination and quantification of trace amount of tritium in water, an efficient separation technology capable of enriching tritium in water is required. Electrolysis is a key technology for tritium enichment as it has a high H/T and D/T separation factors. To separate tritium, it is important to develop a proton exchange membrane (PEM) electrolyzer having high hydrogen isotope separation factor as well as high electrolyzer cell efficiency. However, there has not been sufficient research on the separation factor and cell efficiency according to the composition and manufacturing method of the membrane electrode assembly (MEA) Therefore, it is necessary to study the optimal composition and manufacturing method of the MEA in PEM electrolyzer. In this study, the H/D separation factor and water electrolysis cell efficiency of PEM electrolyzer were analyzed by changing the anode and cathode materials and electrode deposition method of the MEA. After the water electrolysis experiment using deionized water, the D/H ratio in water and hydrogen gas was measured using a cavity ring down spectrometer and a mass spectrometer, respectively, and the separation factor was calculated. To calculate the cell efficiency of water electrolysis, a polarization curves were obtained by measuring the voltage changes while increasing the current density. As a result of the study, the water electrolyzer cell efficiency of the MEA fabricated with different anode/cathode configurations and electrode formation methods was higher than that of commercial MEA. On the other hand, the difference in H/D separation factor was not significant depending on the MEA fabrication methods. Therefore, using a cell with high cell efficiency when the separation factor is the same will help construct a more efficient water electrolysis system by lowering the voltage required for water electrolysis.
        7.
        2022.05 구독 인증기관·개인회원 무료
        In this study, an aerosol process was introduced to produce CaCO3. The possibility of producing CaCO3 by the aerosol process was evaluated. The characteristics of CaCO3 prepared by the aerosol process were also evaluated. In the CaCO3 prepared in this study, as the heat treatment proceeded, the calcite phase disappeared. The portlandite phase and the lime phase were formed by the heat treatment. Even if the CO2 component is removed from the calcite phase, there is a possibility that the converted CO2 component could be adsorbed into the Ca component to form a calcite phase again. Therefore, in order to remove the calcite phase, carbon components should be removed first. The lime phase was formed when CO2 was removed from the calcite phase, while the portlandite phase was formed by the introducing of H2O to the lime phase. Therefore, the order in which each phase formed could be in the order of calcite, lime, and portlandite. The reason for the simultaneous presence of the portlandite phase and the lime phase is that the hydroxyl group (OH−) introduced by H2O was not removed completely due to low temperature and/or insufficient heating time. When the sufficient temperature (900°C) and heating time (60 min) were applied, the hydroxyl group (OH−) was removed to transform into lime phase. Since the precursor contained the hydrogen component, it could be possible that the moisture (H2O) and/or the hydroxyl group (OH−) were introduced during the heat treatment process.
        8.
        2022.05 구독 인증기관·개인회원 무료
        Uranium-235, used for nuclear power generation, has brought radioactive waste. It could be released into the environment during reprocessing or recycling of the spent nuclear fuel. Among the radioactive waste nuclides, I-129 occurs problems due to its long half-life (1.57×107 y) with high mobility in the environment. Therefore, it should be captured and immobilized into a geological disposal system through a stable waste form. One of the methods to capture iodine in the off-gas treatment process is to use silver loaded zeolite filter. It converts radioactive iodine into AgI, one of the most stable iodine forms in the solid state. However, it is difficult to directly dispose of AgI itself in an underground repository because of its aqueous dissolution under reducing condition with Fe2+. It must be immobilized in the matrix materials to prevent release of iodine as a result of chemical reaction. Among the matrix glasses, silver tellurite glass has been proposed. In this study, additives including Al, Bi, Pb, V, Mo, and W were added into the silver tellurite glass. The thermal properties of each matrix for radioactive iodine immobilization were evaluated. The glasses were prepared by the melt-quenching method at 800°C for 1 h. Differential scanning calorimetry (DSC) was performed to evaluate the thermal properties of the glass samples. From the study, the glass transition temperature (Tg) was increased by adding additives such as V2O5, MoO3, or WO3 in the silver tellurite glass. The relative electro-static field (REF) values of V2O5, MoO3, and WO3 are about three times higher than that of the glass network former, TeO2. It could provide sufficient electro-static field (EF) to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. Therefore, the addition of V2O5, MoO3, or WO3 reinforced the glass network cohesion to increase the Tg of the glass. The addition of MoO3or WO3 in the silver tellurite glass increased Tg and crystallization temperature (Tc) with remaining the glass stability.
        9.
        2022.05 구독 인증기관·개인회원 무료
        To reduce the environmental burden caused by the disposal of spent nuclear fuel and maximize the utilization of the repository facility, waste burden minimization technology is currently being developed at the Korea Atomic Energy Research Institute (KEARI). The technology includes a nuclide management process that can maximize disposal efficiency by selectively separating and collecting major nuclides in spent nuclear fuel. In addition, for efficient storage facility utilization, the short-term decay heat generated by spent nuclear fuel must be removed from the waste stream. To minimize the short-term thermal load on the repository facility, it is necessary to separate heat generating nuclides such as Cs-137 and Sr-90 from the spent fuel. In particular, Sr-90 must be separated because it generates high heat during the decay process. KAERI has developed a technology for separating Sr nuclides from Group II nuclides separated through the nuclide management process. In this study, we prepared Sr ceramic waste form, SrTiO3, by using the solid-state reaction method for long-term storage for the decay of separated Sr nuclides and evaluated the physicochemical properties of the waste form. Also, the radiological and thermal characteristics of the Sr waste form were evaluated by predicting the composition of Sr nuclides separated through the nuclide management process, and the estimation of centerline temperature was carried out using the experimental thermal data and steady state conduction equation in a long and solid cylinder type waste form. These results provided fundamental data for long-term storage and management of Sr waste.
        14.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene fiber is considered as a potential material for wearable applications owing to its lightness, flexibility, and high electrical conductivity. After the graphene oxide (GO) solution in the liquid crystal state is assembled into GO fiber through wet spinning, the reduced graphene oxide (rGO) fiber is obtained through a reduction process. In order to further improve the electrical conductivity, herein, we report N, P, and S doped rGO fibers through a facile vacuum diffusion process. The precursors of heteroatoms such as melamine, red phosphorus, and sulfur powders were used through a vacuum diffusion process. The resulting N, P, and S doped rGO fibers with atomic% of 6.52, 4.43 and 2.06% achieved the higher electrical conductivities compared to that of rGO fiber while preserving the fibrious morphology. In particular, N doped rGO fiber achieved the highest conductivity of 1.11 × 104 S m−1, which is 2.44 times greater than that of pristine rGO fiber. The heteroatom doping of rGO fiber through a vacuum diffusion process is facile to improve the electrical conductivity while maintaining the original structure.
        4,000원
        17.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Resistance to extended-spectrum cephalosporin in Enterobacteriaceae is increasingly prevalent in South Korea. This study aims to explore the distribution of AmpC genes in Proteus mirabilis isolated from stray and hospital-admitted companion animals in South Korea. AmpC β-lactamases hold clinical significance due to its potential to facilitate antimicrobial resistance to cefoxitin, cefazolin, and most penicillins. A total of 163 bacterial isolates belonging to the Enterobacteriaceae family were collected from dogs (n = 158) and cats (n=5). Of them, 134 isolates were from hospital-admitted animals, while 29 isolates from stray animals. Boronic acid tests and antimicrobial susceptibility tests were conducted for an initial screening to detect AmpC β-lactamase resistant P. mirabilis. Gene-specific PCRs were conducted to identify the type of AmpC genes, which include six groups (MOXM, CITM, DHAM, ACCM, EBCM, and FOXM), in the resistant isolates. The boronic acid disk tests revealed 45 (27.6%) positive isolates out of 163 isolates tested. Of these 45 isolates, six were determined to harbor the EBCM gene, 13 for CITM, one for FOXM, and one for DHAM by single detection PCR. No isolates carried for ACCM or MOXM. Thus, a total of 21 out of 163 isolates (12.9%) were demonstrated to possess AmpC genes. No isolates contain more than one group of AmpC gene family. A significantly higher percentage of P. mirabilis was found to possess AmpC genes compared to past studies. Therefore, the increasing trend in antimicrobial resistance in P. mirabilis indicates a dire need to monitor antimicrobial prescription in the veterinary field.
        4,000원
        19.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        농촌진흥청 국립원예특작과학원에서는 2017년에 절화 수명이 길고 수량이 많은 연한 핑크색의 스프레이 장미 ‘Pink Shine’ 을 육성하였다. 모본은 ‘Fire Flash’로 붉은 복색의 스프레이 장미이며, 부본은 ‘Pink Charm’으로 핑크색이며 흰가루병에 강하다. 이 두 품종을 2012년 인공교배하여 이듬해인 2013년 1월에 파종, 9cm 포트 묘에 정식하여 관능 평가 실시 후 도태시켜 39개체 의 실생을 얻었다. 이후 화형, 화색, 꽃잎 수, 절화수량, 병 저항성 등을 고려하여 2015년까지 5개체를 선발하여 유사 품종인 ‘Missha’를 대조로 하여 2017년까지 3차에 걸친 특성 검정을 실시하였다. 그 결과 가장 우수한 ‘원교 D1-325’를 최종선발하여 ‘Pink Shine’으로 명명 후 2018년 3월 22일 품종보호출원(제 2018-212호)하여 2019년 6월 21일에 품종보호권(제7786호)이 등록되었다. 화색은 연한 핑크색(RHS, R36D)이며 잎의 색은 녹색(RHS, G137A)으로 대조 품종 ‘Missha’와 동일하였다. 꽃잎 수는 67.8개, 화폭 5.4cm, 화고 3.2cm로 ‘Missha’보다 컸으며 평방미터당 연간 절화수량은 131본, 절화수명은 15.3일로 ‘Missha’ 보다 우수하였다.
        4,000원
        20.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : It is well known that low temperature cracking is one of the most serious distresses on asphalt pavement, especially for northern U.S. (including Alaska), Canada and the northern part of south Korea. The risk of thermal cracking can be numerically measured by estimating thermal stress of a given asphalt mixture. This thermal stress can be computed by low temperature creep testing. Currently, in-direct tensile (IDT) mixture creep test mentioned in AASHTO specification is used for measuring low temperature creep properties of a given asphalt mixture. However, IDT requires the use of expensive testing equipment for performing the sophisticated analysis process, however, very few laboratories utilize this equipment. In this paper, a new and simple performance test (SPT) method: bending beam rheometer (BBR) mixture creep testing equipment is introduced, and the estimated experimental results were compared with those of conventional IDT tests. METHODS: Three different asphalt mixtures containing reclaimed asphalt pavement (RAP) and roofing shingles were prepared in the Korea Expressway Corporation (KEC) research laboratory. Using the BBR and IDT, the low temperature creep stiffness data were measured and subsequently computed. Using a simple power-law function, the creep stiffness data were converted into relaxation modulus, and subsequently compared. Finally, thermal stress results were computed from relaxation modulus master curve using Gaussian quadrature approach with condierations of 24 Gauss number. RESULTS: In the case of the conventional asphalt mixture, similar trends were observed when the relaxation modulus and thermal stress results were compared. In the case of RAP and Shingle added mixtures, relatively different computation results were obtained. It can be estimated that different experimental surroundings and specimen sizes affected the results. CONCLUSIONS: It can be said that the BBR mixture creep test can be a more viable approach for measuring low temperature properties of asphalt mixture compared to expensive and complex IDT testing methods. However, more extensive research and analysis are required to further verify the feasibility of the BBR mixture creep test.
        4,000원
        1 2 3 4 5