검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,182

        61.
        2023.07 구독 인증기관·개인회원 무료
        Despite the importance of technology-based innovation and customer participation for both practitioners and academics, the impact of different customer participation types in new product innovation has rarely been addressed. Since consumers' positive assessment of new technologies leads to positive outcomes in the market, consumer evaluation of new technologies is important. Thus, examining the consumer perception of technology-based innovation including the different levels of customer participation is meaningful to new theoretical and practical insights.
        62.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mass production of high-quality carbon nanotubes (CNTs) remains a challenge, requiring the development of new wetimpregnated catalyst suitable for the catalytic chemical vapor deposition (CCVD) of CNTs in a fluidized bed reactor. For the successful development of a new catalyst, a highly robust system to synthesize CNTs must be established. Here, we systematically investigated the robustness of CNT synthesis by CCVD using a wet-impregnated catalyst. We statistically tested four factors that could potentially affect the robustness of CNT synthesis system, focusing on carbon yield and IG/ID. First, we tested the effect of vacuum baking before CNT growth. F test and CV equality test concluded that vacuum baking recipe did not significantly reduce the variability of the CNT synthesis. Second, we tested the batch-to-batch variation of catalysts. The results of t test and one-way analysis of variance indicate that there is significant difference in carbon yield and IG/ID among catalysts from different batches. Third, we confirmed that there is spatial non-uniformity of wet-impregnated catalysts within a batch when they are produced in large scale. Finally, we developed a multi-step heating recipe to mitigate the temperature overshooting during the CNT synthesis. The multi-step recipe increased the mean of carbon yield, but did not influence the variability of CNT synthesis. We believe that our research can contribute to the establishment of a robust CNT synthesis system and development of new wet-impregnated catalysts.
        4,000원
        63.
        2023.05 구독 인증기관·개인회원 무료
        The organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA) can enhance the radionuclides’ solubility and have the potential to induce the acceleration of radionuclides’ mobility to a far-field from the radioactive waste repository. Hence, it is essential to evaluate the effect of organic complexing agents on radionuclide solubility through experimental analysis under similar conditions to those at the radioactive waste disposal site. In this study, five radionuclides (cesium, cobalt, strontium, iodine, and uranium) and three organic complexing agents (EDTA, NTA, and ISA) were selected as model substances. To simulate environmental conditions, the groundwater was collected near the repository and applied for solubility experiments. The solubility experiments were carried out under various ranges of pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and concentrations of organic complexing agents (0, 10-5, 10-4, 10-3, and 10-2 M). Experimental results showed that the presence of organic complexing agents significantly increased the solubility of the radionuclides. Cobalt and strontium had high solubility enhancement factors, even at low concentrations of organic complexing agents. We also developed a support vector machine (SVM) model using some of the experimental data and validated it using the rest of the solubility data. The root mean square error (RMSE) in the training and validation sets was 0.012 and 0.016, respectively. The SVM model allowed us to estimate the solubility value under untested conditions (e.g., pH 12, temperature 30°C, ISA 5×10-4 M). Therefore, our experimental solubility data and the SVM model can be used to predict radionuclide solubility and solubility enhancement by organic complexing agents under various conditions.
        64.
        2023.05 구독 인증기관·개인회원 무료
        In response to a regulatory mandate, all nuclear licensees are obligated to establish an information system that can provide essential information in the event of a radiation emergency by connecting the monitoring data of the Safety Parameter Display System (SPDS) or equivalent system to the Korea Institute of Nuclear Safety (KINS). Responding to this responsibility, the Korea Atomic Energy Research Institute (KAERI) has established the Safety Information Transmission System (SITS), which enables the collection and real-time monitoring of safety information. The KAERI monitors and collects safety information, which includes data from the HANARO Operation Work Station (OWS) and the HANARO & HANARO Fuel Fabrication Plant (HFFP) Radioactivity Monitoring System (RMS), and the Environmental Radiation Monitoring System (ERMS) & meteorological data. Currently, the transmission of this safety information to the AtomCARE server of the KINS takes place via the SITS server located in the Emergency Operations Facility (EOF). However, the multi-path of transmission through SITS has caused problems such as an increase in data transmission interruptions and errors, as well as delays in identifying the cause and implementing system recovery measures. To address these issues, a new VPN is currently being constructed on the servers of nuclear facilities that generate and manage safety information to establish a direct transmission system of safety information from each nuclear facility to the AtomCARE server. The establishment of a direct transmission system that eliminates unnecessary transit steps is expected to result in stable information transmission and minimize the frequency of data transmission interruptions. As of the improvement progress, a security review was conducted in the second and third quarters of 2022 to evaluate the security of newly introduced VPNs to the nuclear facility server, and based on the results of the review, security measures were strengthened. In the fourth quarter of 2022, the development of a direct transmission system for safety information began, and it is scheduled to be completed by the fourth quarter of 2023. The project includes the construction of the transmission system, system inspection, and comprehensive data stability testing. Afterward, the existing SITS located in the EOF will be renamed as the Safety Information Display System (SIDS), and there are plans to remove any unused servers and VPNs.
        65.
        2023.05 구독 인증기관·개인회원 무료
        In this study, we evaluate artificial neural network (ANN) models that estimate the positions of gamma-ray sources from plastic scintillating fiber (PSF)-based radiation detection systems using different filtering ratios. The PSF-based radiation detection system consists of a single-stranded PSF, two photomultiplier tubes (PMTs) that transform the scintillation signals into electric signals, amplifiers, and a data acquisition system (DAQ). The source used to evaluate the system is Cs-137, with a photopeak of 662 keV and a dose rate of about 5 μSv/h. We construct ANN models with the same structure but different training data. For the training data, we selected a measurement time of 1 minute to secure a sufficient number of data points. Conversely, we chose a measurement time of 10 seconds for extracting time-difference data from the primary data, followed by filtering. During the filtering process, we identified the peak heights of the gaussian-fitted curves obtained from the histogram of the time-difference data, and extracted the data located above the height which is equal to the peak height multiplied by a predetermined percentage. We used percentage values of 0, 20, 40, and 60 for the filtering. The results indicate that the filtering has an effect on the position estimation error, which we define as the absolute value of the difference between the estimated source position and the actual source position. The estimation of the ANN model trained with raw data for the training data shows a total average error of 1.391 m, while the ANN model trained with 20%-filtered data for the training data shows a total average error of 0.263 m. Similarly, the 40%-filtered data result shows a total average error of 0.119 m, and the 60%-filtered data result shows a total average error of 0.0452 m. From the perspective of the total average error, it is clear that the more data are filtered, the more accurate the result is. Further study will be conducted to optimize the filtering ratio for the system and measuring time by evaluating stabilization time for position estimation of the source.
        66.
        2023.05 구독 인증기관·개인회원 무료
        Decommissioning plan of nuclear facilities require the radiological characterizations and the establishment of a decommissioning process that can ensure the safety and efficiency of the decommissioning workers. By utilizing the rapidly developed ICT technology, we have developed a technology that can acquire, analyze, and deliver information from the decommissioning work area to ensure the safety of decommissioning workers, optimize the decommissioning process, and actively respond to various decommissioning situations. The established a surveillance system that monitors nuclide inventory and radiation dose distribution at dismantling work area in real time and wireless transmits data for evaluation. Developed an evaluation program based on an evaluation model for optimizing the dismantling process by linking real-time measurement information. We developed a technology that can detect the location of dismantling workers in real time using stereovision cameras and artificial intelligence technology. The developed technology can be used for safety evaluation of dismantling workers and process optimization evaluation by linking the radionuclides inventory and dose distribution in dismantling work space of decommissioning nuclear power plant in the future.
        67.
        2023.05 구독 인증기관·개인회원 무료
        Working during decommissioning of nuclear facilities can subject workers to a number of industrial health and safety risks. Such facilities can contain hazardous processes and materials such as hot steam, harsh chemicals, electricity, pressurized fluids and mechanical hazards. Workers can be exposed to these and other hazards during normal duties (including slips, trips and falls, driving accidents and drowning). Industrial safety accidents, along with their direct impacts on the individuals involved, can negatively affect the image of nuclear facilities and their general acceptance by the public. Industrial safety is the condition of being protected from physical danger as a result of workplace conditions. Industrial safety program in a nuclear context are the policies and protections put in place to ensure nuclear facility workers are protected from hazards that could cause injury or illness. Preventive actions are those that detect, preclude or mitigate the degradation of a situation. They can be conducted regularly or periodically, one time in a planned manner, or in a predictive manner based on an observed condition. Corrective actions are those that restore a failed or degraded condition to its desired state based on observation of the failure or degradation. In industrial safety, the situations or conditions of interest are those observed via the performance monitoring, investigations, audits and management reviews. Preventive and corrective actions are those designed to place or return the system to its desired state. Preventive actions where possible are preferred as they eliminate the adverse condition prior to it occurring. When an accident or incident occurs, the primary focus is on obtaining appropriate treatment for injured people and securing the scene to prevent additional hazards or injuries. Once the injured personnel have been cared for and the scene has been secured, it is necessary to initiate a formal investigation to determine the extent of the damage, causal factors and corrective actions to be implemented. Certain tools may be needed to investigate such incidents and accidents. Initial identification of evidence immediately following the incident includes a list of people, equipment and materials involved and a recording of environmental factors such as weather, illumination, temperature, noise, ventilation and physical factors such as fatigue and age of the workers. The five Ws (what, who, when, where and why) are useful to remember in investigation of incidents and accidents.
        68.
        2023.05 구독 인증기관·개인회원 무료
        Despite of careful planning of decommissioning projects, there are often surprises when facilities are opened for dismantling purposes, or when material is removed from hot cells, etc. Unexpected incidents and findings during the decommissioning of nuclear facilities have been referred to in the past as unknowns. However, many of the problems encountered during implementation of decommissioning are well known, it is simply that they were not expected to arise. In some other cases, the problem may not have been encountered in the decommissioning team’s experience, forcing the development of new techniques, tools and procedures to address the unexpected problem, with the attendant delays and cost overruns that this often involves. Unknowns in decommissioning cannot be eliminated, regardless of the efforts applied. This is especially the case in old facilities where documentation may have been lost or where modifications were carried out without updates to reports. As a result, when planning for decommissioning, it is prudent to assume that such problems will occur, and ensure that arrangements are in place to deal with them when they arise. This approach will not only improve the efficiency of the decommissioning project, but will also improve the safety of the operations. One of the most common root causes of unexpected events in decommissioning is the lack of detailed design information or missing records of modifications, maintenance issues and incidents during operation. It is therefore necessary to check the completeness of design information in existing plants and to ensure that configuration management techniques are applied at all stages of the lifetime of a plant. In the case of a new plant, archiving samples of materials can be a valuable source of information to support decommissioning planning. During the lifetime of plants, it is likely that modifications will be carried out involving the construction of new buildings. The opportunity should be taken in these circumstances to consider the layout, the physical size and other attributes of the plant to ensure that they do not make decommissioning of existing facilities more difficult and also to optimize the potential for reuse in support of the decommissioning of the whole site, later in the life of the facility. Characterization of all aspects of a plant is essential to reduce the number of unknowns and the likelihood of unexpected events. This characterization should be extensive, but there is a limit to the level of detail that should be sought as the cost versus benefit gain may reduce. Reducing unknowns by retrospectively obtaining physical data associated with a facility is a useful means of characterization, and there are many tools in existence that can be used to carry this out accurately and effectively. Regardless of the efforts that are employed in decommissioning planning, unexpected events should be anticipated and contingency plans prepared. Although the details of the event itself may not be anticipated, its impact may affect safety and environmental discharge, and may or may not involve radiological impacts. Regardless of more serious impacts, unexpected events are likely to result in modifications to the decommissioning plan, incur delays and cost money. Finally, regardless of the status of a facility, whether at the concept stage or at the decommissioning stage of its life cycle, it is never too early to begin thinking and planning for decommissioning.
        69.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting technology capable of remote cutting is being developed to reduce radiation exposure to workers and minimize secondary waste generation when dismantling highly polluted nuclear power plant facilities (reactors, pressurizers, steam generators, coolant pumps, etc.). Laser cutting proceeds in air or water, and at this time, secondary products containing radioactive materials are inevitably generated. In air cutting, dust and aerosol are generated, and in underwater cutting, aerosol, water vapor, dispersed particles (colloid, suspension), sediment (dross, sediment), and radioactive waste liquid are generated. Dispersed particles float in the form of fine particles in water, increasing the turbidity of water as cutting progresses, hindering work, and aerosols contain micrometer-sized particles together with water vapor, which can threaten the safety of workers. Particles dispersed in water and aerosol are within 10% of the mass ratio among secondary products, but the volume they occupy is very large, which can have a significant impact on the environment as well as a burden on treatment capacity. Various characterization methods are being developed to diagnose the generation mechanism and physical and chemical properties of laser cutting secondary products in real time and to secure technologies for collecting and removing dispersed particles and aerosols in water. This study introduces a real-time laser cutting secondary product characteristic evaluation method that can identify the key mechanisms of secondary product generation by analyzing the plasma formation process on laser cutting surface and behavior of aerosol, underwater dispersed particles produced by secondary products, as well as physical and chemical properties in real time with various measurement technologies such as Optical Emission Spectrometer (OES), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOF-MS).
        70.
        2023.05 구독 인증기관·개인회원 무료
        The treatment of waste generated during operation as a part of preparation for decommissioning is coming to the fore as a pending issue. Non-fuel waste stored in the spent fuel pool (SFP) of PWRs in Korea includes Dummy fuel, damaged fuel rod storage container, reactor vessel specimen cask, spent in-core instrumentation, spent control element assemblies, spent neutron source assemblies, burnable poison rods, etc. In order to treat such waste, it is necessary to classify radioactive waste level and analyze kinds of nuclide in accordance with legal requirements. In order to solve the problem, the items that KHNP-CRI is trying to conduct like followings. First, KHNP-CRI will identify the current status of non-fuel waste stored in the SFP of all domestic nuclear power plants. In order to consider the treatment of non-fuel waste, it is essential to know what kind of items and how many items are stored in the SFP. Second, to identify the dimension and characteristics of non-fuel waste stored in the SFP would be conducted. The configuration of non-fuel waste is important information to handle them. Third, the way to handle non-fuel waste would be deduced including analysis of their dimension, whether the equipment should be developed to handle each kind of non-fuel waste or not, how to transport them. In order to classify radioactive waste level and analyze the nuclide for the non-fuel waste, handling tools and the cask to transport them into the facility which nuclide analysis is able to be performed would be required. Fourth, the nuclide analysis technology would be identified. Also, domestic holding technology would be identified and which technology should be developed to classify the radioactive waste level for the non-fuel waste would be deduced. This preliminary study will provide KHNP-CRI with the insight for the nuclide analysis technology and future work which is following action for the non-fuel waste. Based on the result of above preliminary study, the feasibility of the research for the treatment of non-fuel waste would be evaluated and research plan would be established. In conclusion, the treatment of non-fuel waste stored in the spent fuel pool of domestic PWR should be considered to prepare the decommissioning. KHNP-CRI will identify the quantity, the dimension and kinds of non-fuel waste in the SFP of domestic PWR. Also, the various nuclide analysis technology would be identified and the technology which should be developed would be defined through this preliminary study.
        71.
        2023.05 구독 인증기관·개인회원 무료
        An important goal of dismantling process is the disassembling of a spent nuclear fuel assembly for the subsequent extraction process. In order to design the rod extractor and cutter, the major requirements were considered, and the modularization design was carried out considering remote operation and maintenance. In order to design the rod extractor and cutter, these systems were analyzed and designed, also the concept on the rod extraction and cutting were considered by using the solid works tool. The main module consists of five sub-modules, and the function of each is as follows. The clamping module is an assembly fixing module using a cylinder so that the nuclear fuel assembly can be fixed after being placed. The Pusher module pushes the fuel rods by 2 inches out of the assembly to grip the fuel rods. The extraction module extracts the fuel rods of the nuclear fuel assembly and moves them to the consolidation module. The consolidation module collects and consolidates the extracted fuel rods before moving them to the cutting device. And the support module is a base platform on which the modules of the main device can be placed. The modules of level 2 can be disassembled or assembled freely without mutual interference. For the design of fuel rods cutter, the following main requirements were considered. The fuel rod cut section should not be deformed for subsequent processing, and the horizontally mounted fuel rods must be cut at regular intervals. The cutter should have the provision for aligning with the fuel rod, and the feeder and transport clamp should be designed to transfer the fuel rods to the cutting area. The main module consists of 6 sub-modules, and function of each is as follows. The cutting module is a device that cuts the fuel rods to the appropriate depth for notching. The impacting module is a device that impacts the fuel rods and moves them to the collection module. The transfer module is a device that moves the fuel rods to the cutting module when the aligned fuel rods enter the clamp module. The clamping module is a device to clamp the fuel rods before moving them to the cutting module. The collection module is a container where the rod-cuts are collected, and the support module is a base platform on which the modules of the main device can be placed. The module of level 3 can be disassembled or assembled after the cutting module of level 2 is installed, and the modules of level 2 can be disassembled or assembled freely without mutual interference.
        72.
        2023.05 구독 인증기관·개인회원 무료
        The stabilization technology for the damaged spent fuel is being developed to process the damaged fuel into sound pellet suitable for dry re-fabrication. It requires several treatments including oxidative decladding followed by reduction treatment for oxidized powder closely related to the quality of oxidized powders for pellet fabrication. For the development of operating condition for the reduction treatment, in this study, we evaluated the effect of air-cylinder based vertical shaking previously applied to oxidative decladding on powder reduction. For U3O8 of 50-100 g, the reduction test were applied with and without vertical shaking at 700°C under reduction atmosphere (Ar + 4%H2) and the concentration of hydrogen in effluent was measured to evaluate the reduction reaction. It was found that the vertical shaking system has allowed the reaction time of 50 g and 100 g U3O8 reduced by 33% compared to the test in static mode. Based on XRD analysis, the better crystallinity of the products was also achieved.
        73.
        2023.05 구독 인증기관·개인회원 무료
        In this paper, a basic study was conducted to observe the temperature inside the tube according to the heating temperature of the tube furnace. In a tube furnace, a tube is inserted, and the air space outside the tube is heated to increase the temperature of the gas inside the tube through conduction of the tube. Tube furnaces are widely used in research to capture volatile nuclides. In this case, a volatile nuclide capturing filter is inserted inside the tube, and an appropriate temperature is required to capture it. Since the tube furnace heats the air space outside the tube to the target temperature, a difference from the temperature inside the tube occurs. In particular, if a flow of gas occurs inside the tube, a larger temperature difference may occur. In order to confirm this temperature difference, an experimental device was constructed, and basic data was produced through several experiments. The following studies were conducted to produce data. First, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time in the absence of gas flow inside the tube. Second, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time while air having a certain temperature was flowing inside the tube. As a result of the experiment, when there is no flow inside the tube, when the heating target temperature is low, the temperature inside the tube is significantly lower than the target temperature, and when the target temperature is high, the temperature inside the tube approaches the target temperature. It was found that when there is about 20°C air flow inside the tube, the temperature inside the tube is significantly lowered even if the heating target temperature is high. In the future, additional research on changing the temperature of the gas flowing inside the tube will be conducted, and the results of this study are expected to greatly contribute to the design of a tube furnace that captures volatile nuclides.
        74.
        2023.05 구독 인증기관·개인회원 무료
        As temporary storage facilities for spent nuclear fuel (SNF) are becoming saturated, there is a growing interest in finding solutions for treating SNF, which is recognized as an urgent task. Although direct disposal is a common method for handling SNF, it results in the entire fuel assembly being classified as high-level waste, which increases the burden of disposal. Therefore, it is necessary to develop SNF treatment technologies that can minimize the disposal burden while improving long-term storage safety, and this requires continuous efforts from a national policy perspective. In this context, this study focused on reducing the volume of high-level waste from light water reactor fuel by separating uranium, which represents the majority of SNF. We confirmed the chlorination characteristics of uranium (U), rare earth (RE), and strontium (Sr) oxides with ammonium chloride (NH4Cl) in previous study. Therefore, we prepared U-RE-SrOx simulated fuel by pelletizing each elements which was sintered at high temperature. The sintered fuel was again powdered by heating under air environment. The powdered fuel was reacted with NH4Cl to selectively chlorinate the RE and Sr elements for the separation. We will share and discuss the detailed results of our study.
        75.
        2023.05 구독 인증기관·개인회원 무료
        The stabilization techniques are highly required for damaged nuclear fuel to strengthen safety in terms of transportation, storage, and disposal. This technique includes recovering fuel materials from spent fuel, fabrication of stabilized pellets, and fabrication of fuel rods. Thus, it is important to identify the leaching behavior of the stabilized pellets to verify their stability in humid environments which are similar to storage conditions. In this study, we introduce various leaching experiment methods to evaluate the leaching behavior of the stabilized pellets, and determine the most suitable leaching test methods for the pellets. Also, we establish the leaching test conditions with various factors that can affect the dissolution and leaching behavior of the stabilized pellets. Accordingly, we prepare the simulated high- (55 GWd/tU) and low- (35 GWd/tU) burnup nuclear fuel (SIMFUEL) and pure UO2 pellets sintered at 1,550°C and 1,700°C, respectively. Each pellet is placed in a vessel and filled with DI water and perform the leaching test at three different temperature to verify the leaching mechanism at different temperature range. Based on the standard leaching test method (ASTM C1308-21), the test solution is removed from the pellet after specific time intervals and replaced in the fresh water, and the vessel is placed back into the controlled-temperature ovens. The test solutions are analyzed by using ICP-MS.
        76.
        2023.05 구독 인증기관·개인회원 무료
        The damaged spent fuel rods must be stabilized by encapsulation or dry re-fabrication technologies before geological disposal. For applying the dry re-fabrication technology, we manufactured a vertical type furnace to perform the fuel material recovery from damaged fuel rods by oxidative decladding technology. As driving forces to accelerate oxidative decladding rate, magnetic vibration and pulse hammering generated by a pneumatic cylinder were used in this study. The oxidative decladding efficiency and recovery rate of fuel oxide powder with rod-cut length, oxidation temperature and time, oxygen concentration, and gas mixtures were investigated using simfuel rod-cuts in a vertical furnace for fuel material recovery and powder quality improvement. The oxidative decladding was performed for 2.5-10 h as following operation parameters: simfuel rod-cut length of 50-200 mm, oxidative temperature from 450 to 580°C, oxygen concentration of 49.5 or 75.6%, and gas mixtures in O2/Ar or O2/N2. In magnetic vibration, oxidative decladding was progressed only at bottom portion of fuel rodcut. Whereas, oxidative decladding in pulse hammering was occurred at both top and bottom portions of fuel-rod. In pulse hammering method, the oxidative decladding conditions to declad rod-cuts of 50- 200 mm in length were established to achieve both decladding efficiency of ~100% and fuel material recovery rate of > 99%. These conditions were as follows: oxidation temperature and time at 500°C and 2.5-10 h, oxygen concentration at 75.6% under O2/N2 gas mixtures. As operation conditions for a pneumatic cylinder, stroking, actuating, and waiting times were 0.5, 3, and 12 s.
        77.
        2023.05 구독 인증기관·개인회원 무료
        When damaged nuclear fuel is stripped and re-fabricated into stabilized pellets, it is necessary to analyze the characteristics of the stabilized pellets, such as density, leaching behavior, and compressive strength, for final disposal. In this study, simulated nuclear fuel with UO2 and burn-up of 35 GWd/tU and 55 GWd/tU was used to measure the compressive strength of the stabilization pellet. In order to change the density of the sintered pellet, a sintered pellet was prepared by heat treatment at 1,550°C and 1,700°C for 6 hours in a reducing atmosphere of 4% H2/Ar. In the case of UO2, the density was 10.4 g/cm3 (94.5% of T.D.) and 10.6 g/cm3 (96.6% of T.D.) depending on the sintering temperature (1,550°C, 1,700°C). In the case of simulated fuel with a burn-up of 35 GWd/tU, the density was 8.8 g/cm3 (80.9% of T.D.) and 10.2 g/cm3 (93.6% of T.D.) depending on the sintering temperature (1,550°C, 1,700°C). In the case of simulated fuel with a burn-up of 55 GWd/tU, the density was 8.3 g/cm3 (77.0% of T.D.) and 10.0 g/cm3 (92.3% of T.D.) depending on the sintering temperature (1,550°C, 1,700°C). It was found that the compressive strength of simulated nuclear fuel decreased with increasing burn-up and increased with increasing density. In the case of UO2, the compressive strengths were 717.8 MPa and 897.4 MPa when the densities were 10.4 g/cm3 and 10.6 g.cm3, respectively. In the case of simulated nuclear fuel with a burn-up of 35 GWd/tU, the compressive strengths were 472.1 MPa and 732.3 MPa when the densities were 8.8 g/cm3 and 10.2 g/cm3. In the case of simulated nuclear fuel with a burn-up of 55 GWd/tU, the compressive strengths were 301.4 MPa and 515.5 MPa when the densities were 8.3 g/cm3 and 10.0 g/cm3, respectively.
        78.
        2023.05 구독 인증기관·개인회원 무료
        Separating nuclides from spent nuclear fuel is crucial to reduce the final disposal area. The use of molten salt offers a potential method for nuclide separation without requiring electricity, similar to the oxide reduction process in pyroprocessing. In this study, a molten salt leaching technique was evaluated for its ability to separate nuclides from simulated oxide fuel in MgCl2 molten salts at 800°C. The simulated oxide fuel contained 2wt% Sr, 3wt% Ba, 2wt% Ce, 3wt% Nd, 3wt% Zr, 2wt% Mo, and 89wt% U. The separation of Sr from the simulated oxide fuel was achieved by loading it into a porous alumina basket and immersing it in the molten salt. The concentration of Sr in the salt was measured using ICP analysis after sampling the salt outside the basket with a dip-stick technique. The separated nuclides were analyzed with ICP-OES up to a duration of 156 hours. The results indicate that Ba and Sr can be successfully separated from the simulated fuel in MgCl2, while Ce, Nd, and U were not effectively separated.
        79.
        2023.05 구독 인증기관·개인회원 무료
        Considering the domestic situation where all nuclear power plants are located on seaside, the interim storage site is also likely to be located on coastal site. Maritime transportation is inevitable and the its risk assessment is very important for safety. Currently, there is no independently developed maritime transportation risk assessment code in Korea, and no research has been conducted to evaluate the release of radioactive waste due to the immersion of transport cask. Previous studies show that the release rate of radionuclides contained in a submerged transport cask is significantly affected by the area of flow path generated at the breached containment boundary. Due to the robustness of a cask, the breach is the most likely generated between the lid and body of cask. CRIEPI investigated the effect of cask containment on the release rate of radioactive contents into the ocean and proposed a procedure to calculate the release rate considering the so-called barrier effect. However, the contribution of O-ring on the release rate was not considered in the work. In this study, test and analysis is performed to determine the equivalent flow path gap considering the influence of O-rings. These results will be implemented in the computational model to assess sea water flow through a breached containment boundary using CFD techniques to assess radionuclide release rates. The evaluation of release rate due to container lid gaps has been performed by CRIEPI and BAM. In CRIEPI, the gap of the flow path was calculated from the roughness of the container surface without a quantitative assessment of the severity of the accident. In this work, to evaluate the release rate as a function of lid displacement, a small containment vessel is engineered and a metal Oring of the Helicoflex HN type is installed, which is the most commonly used one in transport and storage casks. The lid of containment vessel is displaced in vertical and horizontal direction and the release rate of the vessel was quantified using the helium leak test and the pressure drop test. Through this work, the relationship between the vertical opening displacement and horizontal sliding displacement of the cask lid and the actual flow path area created is established. This will be implemented in the CFD model for flow rate calculation from a submerged transport cask in the deep sea.
        1 2 3 4 5