검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.11 구독 인증기관·개인회원 무료
        At domestic nuclear power plant, concrete containers are stored to store waste generated before waste acceptance criteria (WAC) was established. Concrete container store concentrated waste liquid and waste resin. In order to disposal radioactive waste to a disposal site, it is necessary to conduct a characteristic evaluation inside the waste to check whether it satisfies the WAC. Two types of concrete containers are stored: round and square. The round type is filled with one 200-liter drum, and the square type is filled with four 200-liter drums. In the case of a round shape, the top lid is fastened with bolts, so it is possible to collect samples after opening the top lid without the need for additional equipment. However, in the case of a square shape, there is no top lid, and concrete is poured to cure the lid, so the separate equipment for characteristic evaluation is required. It is necessary to install a workstation for sample collection on the top of the concrete container, equipment for coring the top of the concrete container, and a device to prevent concrete dust scattering. Currently, the design of equipment for evaluating the characteristics of concrete containers has been completed, and equipment optimization through mock-up test will be performed in the future.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Concentrated effluent and spent ion exchange resins (IERs) from nuclear power plants (NPPs) were generated prior to the establishment of a disposal facility site and waste acceptance criteria have been temporarily stored at the NPPs because their suitability for disposal has not been confirmed. In particular, at the Kori Unit 1, which was the first to start the commercial operation in South Korea, the initially generated concentrated effluent and IERs are repackaged in large size of concrete containers and stored without provided regulation standard. The concentrated effluent is package as cementitious form in 200 L drums and repackaged in concrete containers, case of the IERs were solidified or dehydrated and repackaged in round concrete container. In this study, we review and propose a disposal plan for concentrated effluent and IERs repackaging drums that have not been confirmed to be suitable for disposal from the first operating nuclear power plant, Kori Unit 1, 2. First, the concentrated effluent was stored in four 200 L drums respectively, and then, it was again stored in concrete container and which was poured on top using grouted concrete. Therefore, the process was required by cutting concrete container for extracting the internal drums at first. Internal radioactive waste should be crushed to the suitable waste criteria and solidified, finally disposal in to the polymer concrete high integrity container (PC-HIC). IER was repackaged and disposal in square type of 200 L concrete drums respectively covered the cap. So, extracting the internal drums should be extracted after removing the cap of external concrete container. Cement solidification drums can be crushed and re-solidified or disposed in the PC-HIC. Stored IER after dehydrated can be disposal in PC-HIC. In conclusion, the container was used as a package that repackaging the concentrated effluent and IER was separated into two different types of waste depending on the level of contamination of radioactivity, the polluted area is disposed of as radioactivity contamination or the unspoiled area will be treated as self-disposal waste.
        3.
        2023.08 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This descriptive correlational study describes the relationship between collaboration among health care professions and nurses’ organizational commitment in the operating room. A cross sectional survey of nurses (N = 142) was conducted in March 2020. The participants were nurses with more than one year work experience in operating rooms at three university hospitals in Seoul and Gyeonggi-do. Collaboration among nurses was measured using the Nurse–Nurse Collaboration Scale, while collaboration between nurses and physicians was measured by the Nurse-Physician Collaboration Scale (NPCS). All analyses were conducted using the IBM SPSS Statistics, version 23.0 with independent t-test, one-way ANOVA, Scheffé test, Pearson's Correlation, and multiple regression. The results were as follows : The collaboration among operating room nurses was scored with an average of 2.87 out of a total of 4. Collaboration between operating room nurses to physician scored 3.47 average out of 5 total. Organizational commitment scored 3.24 average out of 5 total. The factors influencing the organizational commitment of nurses in operating rooms include collaboration among nurses and effective communication, as well as collaboration between nurses and physicians for decision-making regarding treatment and nursing care. The explanatory amount of general characteristic, nurse-physician collaboration, and nurse-nurse collaboration variables was 33%, 15%, 13% respectively. Based on these findings, to enhance collaboration among operating room nurses, there is a significant need for systematic education on communication skills and decision-making competencies, continuous research, and organizational efforts.
        4,200원
        4.
        2023.05 구독 인증기관·개인회원 무료
        Hanford site has been operated since 1943 to produce the plutonium for nuclear weapons. Significant amount of radioactive wastes was generated by the nuclear weapons production process. The radioactive wastes are stored in 177 aged underground tanks. Due to the risk of leakage into the air and the Columbia River, the US DOE and EPA, and Washington State Department of Ecology organized the Tri-Party Agreement (TPA) to clean-up the Hanford site in 1989. The LAW (low-activity waste) vitrification facility named WTP (Waste Treatment Plant) is plan to vitrify about 212 million liters of radioactive waste. The US DOE announced that the world’s largest melter to vitrify the LAW was heated up on October 8, 2022.
        5.
        2023.05 구독 인증기관·개인회원 무료
        The treatment of waste generated during operation as a part of preparation for decommissioning is coming to the fore as a pending issue. Non-fuel waste stored in the spent fuel pool (SFP) of PWRs in Korea includes Dummy fuel, damaged fuel rod storage container, reactor vessel specimen cask, spent in-core instrumentation, spent control element assemblies, spent neutron source assemblies, burnable poison rods, etc. In order to treat such waste, it is necessary to classify radioactive waste level and analyze kinds of nuclide in accordance with legal requirements. In order to solve the problem, the items that KHNP-CRI is trying to conduct like followings. First, KHNP-CRI will identify the current status of non-fuel waste stored in the SFP of all domestic nuclear power plants. In order to consider the treatment of non-fuel waste, it is essential to know what kind of items and how many items are stored in the SFP. Second, to identify the dimension and characteristics of non-fuel waste stored in the SFP would be conducted. The configuration of non-fuel waste is important information to handle them. Third, the way to handle non-fuel waste would be deduced including analysis of their dimension, whether the equipment should be developed to handle each kind of non-fuel waste or not, how to transport them. In order to classify radioactive waste level and analyze the nuclide for the non-fuel waste, handling tools and the cask to transport them into the facility which nuclide analysis is able to be performed would be required. Fourth, the nuclide analysis technology would be identified. Also, domestic holding technology would be identified and which technology should be developed to classify the radioactive waste level for the non-fuel waste would be deduced. This preliminary study will provide KHNP-CRI with the insight for the nuclide analysis technology and future work which is following action for the non-fuel waste. Based on the result of above preliminary study, the feasibility of the research for the treatment of non-fuel waste would be evaluated and research plan would be established. In conclusion, the treatment of non-fuel waste stored in the spent fuel pool of domestic PWR should be considered to prepare the decommissioning. KHNP-CRI will identify the quantity, the dimension and kinds of non-fuel waste in the SFP of domestic PWR. Also, the various nuclide analysis technology would be identified and the technology which should be developed would be defined through this preliminary study.
        9.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        최근 진단 X선 검출기 적용을 위한 방사선 검출물질로 반도체 화합물에 대한 많은 연구가 되고 있다. 본 연구에서는 반도체 화합물 중 광민감도가 우수하고 X선 흡수율이 높은 CdS 반도체를 이용하여 검출센서를 제작하였으며, 진단 X 선 발생장치에서의 에너지 영역에 대한 검출특성을 조사함으로써 적용 가능성을 평가하였다. 센서 제작은 CdS 센서로 부터의 신호 획득 및 정량화를 위한 Line voltage selector(LCV)를 제작하였으며, 전압감지회로 및 정류회로부를 설계 제작하였다. 또한 X선 노출조건에 따른 상호연관 알고리즘을 이용하였으며, DAC 컨트롤러와의 Interface board를 설 계 제작하였다. 성능평가는 X선 발생장치의 조사조건인 관전압, 관전류 및 조사시간별 저항변화에 따른 전압파형 특성 을 오실로스코프로 획득하여 ANOVA 프로그램을 이용하여 데이터를 통계 처리 및 분석하였다. 측정결과, 관전압과 관 전류이 증가할수록 오차의 비가 감소하였으며, 90 kVp에서 6%, 320 mA에서 0.4% 이하의 좋은 특성을 보였으며, 결 정계수는 약 0.98로 1:1의 상관관계를 보였다. X선 조사시간에 따른 오차율은 CdS 물질의 늦은 반응속도에 기인하여 조사시간이 길어질수록 지수적으로 감소하는 것을 알 수 있었으며, 320 msec에서 2.3%의 오차율을 보였다. 끝으로 X 선 선량에 따른 오차율은 약 10% 이하였으며, 0.9898의 결정계수로 매우 높은 상관관계를 보였다.
        10.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        최근 디지털 방사선 영상획득을 위한 평판형 X선 검출기에 이용되는 광도전체(a-Se, HgI2, PbO, CdTe, PbI2 등)에 대 한 관심이 증대되고 있다. 본 연구에서는 HgI2 와 a-Se 필름 변환체에 대해 X선에 대한 전기적 신호검출 특성을 조사하였 다. 수백 마이크로의 두꺼운 광도전체 필름 제작을 위해 HgI2는 입자침전방법을 이용하였고, a-Se은 종래의 진공열증착법 을 이용하였다. 제작된 시편에 대한 전기적 특성 실험은 누설전류, 신호응답 특성, 민감도 등을 측정하였다. 실험결과로부 터, HgI2는 상용화된 a-Se에 비해 낮은 동작전압특성과 우수한 신호 발생율을 보임을 알 수 있었다.