검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.
        4,000원
        2.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2- sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 oC. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 oC improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.
        4,000원
        3.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Highly self-cleaning thin films of TiO2-SiO2 co-doped with Ag and F are prepared by the sol-gel method. The asprepared thin films consist of bottom SiO2 and top TiO2 layers which are modified by doping with F, Ag and F-Ag elements. XRD analysis confirms that the prepared thin film is a crystalline anatase phase. UV-vis spectra show that the light absorption of Ag-F-TiO2/SiO2 thin films is tuned in the visible region. The self-cleaning properties of the prepared films are evaluated by a water contact angle measurement under UV light irradiation. The photocatalytic performances of the thin films are studied using methylene blue dye under both UV and visible light irradiation. The Ag-F-TiO2/SiO2 thin films exhibit higher photocatalytic activity under both UV and visible light compared with other samples of pure TiO2, Ag-doped TiO2, and F-doped TiO2 films.
        4,000원
        4.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Self-cleaning and photocatalytic TiO2 thin films were prepared by a facile sol-gel method followed by spin coating using peroxo titanic acid as a precursor. The as-prepared thin films were heated at low temperature(110 °C) and high temperature (400 °C). Thin films were characterized by X-ray diffraction(XRD), Field-emission scanning electron microscopy(FESEM), UVVisible spectroscopy and water contact angle measurement. XRD analysis confirms the low crystallinity of thin films prepared at low temperature, while crystalline anatase phase was found the for high temperature thin film. The photocatalytic activity of thin films was studied by the photocatalytic degradation of methylene blue dye solution. Self-cleaning and photocatalytic performance of both low and high temperature thin films were compared.
        4,000원
        5.
        2016.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 nanoparticles were synthesized by a sol-gel process using titanium tetra isopropoxide as a precursor at room temperature. Ag-doped TiO2 nanoparticles were prepared by photoreduction of AgNO3 on TiO2 under UV light irradiation and calcinated at 400 oC. Ag-doped TiO2 nanoparticles were characterized for their structural and morphological properties by Xray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photocatalytic properties of the TiO2 and Ag-doped TiO2 nanoparticles were evaluated according to the degree of photocatalytic degradation of gaseous benzene under UV and visible light irradiation. To estimate the rate of photolysis under UV (λ = 365 nm) and visible (λ ≥ 410 nm) light, the residual concentration of benzene was monitored by gas chromatography (GC). Both undoped/doped nanoparticles showed about 80 % of photolysis of benzene under UV light. However, under visible light irradiation Ag-doped TiO2 nanoparticles exhibited a photocatalytic reaction toward the photodegradation of benzene more efficient than that of bare TiO2. The enhanced photocatalytic reaction of Ag-doped TiO2 nanoparticles is attributed to the decrease in the activation energy and to the existence of Ag in the TiO2 host lattice, which increases the absorption capacity in the visible region by acting as an electron trapper and promotes charge separation of the photoinduced electrons (e−) and holes (h+). The use of Ag-doped TiO2 nanoparticles preserved the option of an environmentally benign photocatalytic reaction using visible light; These particles can be applicable to environmental cleaning applications.
        4,000원