검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.10 구독 인증기관·개인회원 무료
        Various radionuclides are released and contaminate soils by the nuclear accidents, nuclear tests and disposal of radioactive waste. Among radionuclides, 137Cs is a harmful radioactive element that emits high-energy β particles and γ rays with a half-life of 30.2 years. 137Cs is difficult to extract because it is fixed to soil particles. For the volume reduction technology development of contaminated soil, this study tried to evaluate the irreversible Cs adsorption capacity of granite-originated soil. The soil sample used in the study was collected from C horizon of the soil developed in Mesozoic mica granite. The soil texture, mineralogy, organic content, pH, EC, cation exchange capacity (CEC), water-soluble cation and anion content of the soil samples were determined. A kinetic adsorption experiment and an isotherm adsorption experiment were performed to understand the overall Cs adsorption characteristics using 133Cs. The desorption of Cs by 0.1 mM KCl was also tested for the sample spiked with 133Cs and 137Cs. The soil sample showed a pH of 6.73, EC of 24.50 μS cm-1, and CEC of 1.34 cmolc kg-1, organic matter of 0.53% and sandy loam in texture. Quartz, feldspar and mica were identified as the major mineral components of bulk sample. The clay fraction consists of mica, hydroxyl-interlayer vermiculite (HIV), vermiculite and kaolinite. In the kinetic adsorption experiment, the Cs adsorption showed fast adsorption rates at the initial stage (6 hours) regardless of the 133Cs concentration, and the adsorption equilibrium state was reached after 48 hours. It was the most suitable for the pseudo second-order model. The 133Cs adsorption increased nonlinearly from low to high concentration, which was well match with the dual site Langmuir model. As a result of the desorption experiment, desorption was not performed up to 1.1 mg kg-1 in the presence of competitive ions K+, which is about 0.035% of CEC calculated by the isotherm model. The adsorption of Cs was controlled by frayed edge sites (FES) at a low concentrations and by basal sites or interlayer sites at a high concentration. Irreversible Cs fixation of by FES may be contributed by mainly weathered mica, and when these minerals are separated from the granite origin soil, the possibility of reducing the contamination concentration and volume of radioactive soil waste can be expected.
        2.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examines paraelectric Bi1.5Zn1.0Nb1.5O7 (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at 200 oC for 5 and 30 minutes following quenching. The amount of α-phase in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of 4.9 J/cm3, which is larger than that of the pure BZN film of 3.6 J/cm3.
        4,000원
        3.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lead free (Ba0.7Ca0.3) TiO3 thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nanosized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at 700 ℃/2h have an energy density of 1.84 J/cm3 and a charge-discharge efficiency of 69.9%, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.
        4,000원