검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2023.04 구독 인증기관·개인회원 무료
        2.
        2022.04 구독 인증기관·개인회원 무료
        4.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4{1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scienti c scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.
        4,600원
        7.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with MNUV < - 18.4 AB mag and have high probabilities of hosting SNe (0.06 SN yr-1 per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R  19:5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as 0.1 R . The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fi elds (16 in IMSNG galaxies) over 5 years, confi rming our SN rate estimate of 0.06 SN yr-1 per galaxy.
        4,200원
        12.
        2018.04 구독 인증기관·개인회원 무료
        14.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Utilizing a unique capability of AKARI that allows deep spectroscopy at 2.5 - 5.0 μm, we performed a spectroscopy study of more than 200 quasars through one of the AKARI mission programs, QSONG (Quasar Spectroscopic Observation with NIR Grism). QSONG targeted 155 high redshift (3:3 < z < 6:42) quasars and 90 low redshift active galactic nuclei (0:002 < z < 0:48). In order to provide black hole mass estimates based on the rest-frame optical spectra, the high redshift part of QSONG is designed to detect the Hα line and the rest-frame optical spectra of quasars at z > 3:3. The low redshift part of QSONG is geared to uncover the rest-frame 2.5 - 5.0 μm spectral features of active galactic nuclei to gain useful information such as the dust-extinction-free black hole mass estimators based on the Brackett lines and the temperatures of the hot dust torus. We outline the program strategy, and present some of the scientific highlights from QSONG, including the detection of the Hα line from a quasar at z > 4:5 which indicates a rigorous growth of black holes in the early universe, and the Brβ-based black hole mass estimators and the hot dust temperatures (~ 1100 K) of low redshift AGNs.
        4,000원
        16.
        2016.04 구독 인증기관·개인회원 무료
        17.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We introduce the Lee Sang Gak Telescope (LSGT), a remotely operated, robotic 0.43-meter telescope. The telescope was installed at the Siding Spring Observatory, Australia, in 2014 October, to secure regular and exclusive access to the dark sky and excellent atmospheric conditions in the southern hemisphere from the Seoul National University (SNU) campus. Here, we describe the LSGT system and its performance, present example images from early observations, and discuss a future plan to upgrade the system. The use of the telescope includes (i) long-term monitoring observations of nearby galaxies, active galactic nuclei, and supernovae; (ii) rapid follow-up observations of transients such as gamma-ray bursts and gravitational wave sources; and (iii) observations for educational activities at SNU. Based on observations performed so far, we nd that the telescope is capable of providing images to a depth of R = 21:5 mag (point source detection) at 5- with 15 min total integration time under good observing conditions.
        4,000원
        18.
        2015.04 구독 인증기관·개인회원 무료
        19.
        2015.04 구독 인증기관·개인회원 무료
        20.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Intensity interferometry, based on the Hanbury Brown–Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as mR ≈ 14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass–radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade–Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
        5,400원
        1 2 3