검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Exposure to ultraviolet (UV) light is often associated with skin damage, sometimes very serious, and in recent times has received particular attention as a health risk. As a result, the proper use of sunscreen has long been recommended to protect against skin damage. The continued increase in the use of sunscreen may be linked to increased information about the risk of melanoma and non-melanoma skin cancer caused by prolonged exposure to ultraviolet rays. Natural and harmless materials that block and prevent UV light have emerged as essential household items in the field of skin beauty. New materials need to be considered and evaluated in relation to ultraviolet rays and their harmful effects. This study aims to explain the effect of UV exposure on human skin, the classification of sunscreens, the application of zeolite, nano clay, and LDH in sunscreen formulations, as well as the regulation of this service in various countries around the world.
        4,000원
        2.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research aims to study the simultaneous extraction and transesterification of Chlorella vulgaris (C. vulgaris) using microwave irradiation with methanol as solvent and potassium hydroxide (KOH) as catalyst. The microwave-assisted insitu transesterification of C. vulgaris is assessed at various ratios of biomass-to-methanol, reaction times, and catalyst concentrations during the centrifugation and evaporation process. Gas chromatography-mass spectrometry (GC-MS) analysis is performed to confirm fatty acid methyl ester (FAME) composition. Biodiesel preparation is carried out by simultaneous extraction and transesterification of microalgae from C. vulgaris. The product is then characterized using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR); microalgae are observed using scanning electron microscopy (SEM). The highest amount of FAME is obtained at a biomass-to-methanol ratio of 1:12, reaction time of 40 min, and catalyst concentration of 2 wt%. Biodiesel shows conversion to about 77.64% of methyl ester (methyl myristate, methyl palmitoleate, methyl linoleate, methyl oleate, methyl arachidonate, and methyl 5,8,11,14,17-eicosapentanoate).
        4,000원