검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.10 구독 인증기관·개인회원 무료
        Niobium (Nb) is present in Ni-based alloys and stainless steels used in nuclear reactors as structural materials. Nb-93 is a naturally occurring and stable isotope of niobium and Nb-94 (half-life = 20,000 years) is produced by neutron activation of Nb-93. Nb-94 can be present in waste streams from dismantling of nuclear power plants and treatment of the primary coolant circuit. Hence, the radioactive wastes containing active Nb-94 are disposed of in the repositories for low- and intermediate-level waste (LILW). Nb predominantly exhibits a pentavalent oxidation state (i.e., +V) within the stability field of water. Cementitious materials (concrete, mortar, and grout) are extensively utilized in LILW disposal systems as structural components and chemical agents for the stabilization of waste. Solubility defines the source term (i.e., upper concentration limit) in the repository system. However, the solubility behavior of Nb in cementitious systems at high pH remains ill-defined, and information available on the Nb solid phases controlling the solubility is scarce and often ambiguous. Sorption on cementbased materials is one of the main mechanisms controlling the retention of niobium(V) in a LILW repository, and distribution coefficients (Rd) are necessary to evaluate the retention capacity by sorption in the safety assessment of disposal systems. Available sorption data of Nb(V) on cement showed a large discrepancy in Rd, moreover, no sorption data is available for Nb(V) under conditions characterizing the first degradation stage of cement (young cement condition) at pH 13 – 13.5. In this context, the solubility of Nb was extensively investigated in porewater conditions representative of the cement degradation stage I, as well as in CaCl2-Ca(OH)2 systems. Special focus was given to the accurate characterization of the solubility-controlling solid niobium phases. We also studied the sorption of Nb(V) by hardened cement pastes (HCP) and calcium silicate hydrates (CSH, major hydrate of HCP). This work provides the results on Rd, sorption isotherm and sorption mechanisms of Nb(V). Besides, the impact of ISA (polyhydroxycarboxylic acid generated by the degradation of cellulose) on Nb(V) sorption and the dissolution of cement materials was investigated.