검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        The floc formation, breakage and reformation of humic acid by inorganic (alum and PAC) and organic coagulants (cationic polyelectrolytes) at several conditions (pH, ionic strength and floc breakage time) were examined and compared among the coagulants at different conditions using a continuous optical monitoring method, with controlled mixing and stirring conditions. For alum, the shapes of formation, breakage and reformation curves at different pH (5 and 7) were different, but the shapes and the sizes of initial floc and reformed floc were nearly the same in the absence and presence of electrolytes at pH 7. For PAC, similar shapes of the curves were obtained at different pH and ionic strength, but the sizes were different, except for those of reformed flocs at different pH. However, for these coagulants, reformed flocs after floc breakage, occurred irreversibly for all the conditions used in this study. For organic coagulants, the time to attain the initial plateau floc size, the extent of floc strength at high shear rate and reversibility of reformed flocs were different, depending floc formation mechanism. Especially, for the cationic polyelectrolyte forming humic flocs by charge neutralization or electrostatic patch effect mechanism, reformed flocs occurred reversibly, regardless of pH and floc breakage time, but occurred irreversibly in the presence of electrolytes.
        2.
        2005.08 KCI 등재 서비스 종료(열람 제한)
        The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as CaCl2 and MgCl2. However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.