검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 376

        1.
        2024.04 구독 인증기관·개인회원 무료
        Subgenus Bothynoptera Schaum, 1863 of the genus Parena is mainly found in Oriental region. Despite this widespread distribution, species of the subgenus Bothynoptera are poorly known in Korea. While a total of 14 species have been recorded worldwide, only 3 species have been recorded in Korea. In this study, as a revisional work of Korean known species, a pictorial key and photographs of habitus and male genitalia for each species are provided, with a newly recorded species in Korea.
        2.
        2024.04 구독 인증기관·개인회원 무료
        The genus Bembidion is a prominent terrestrial group found in various regions around the world, encompassing a large number of species. Species of this genus have a reduced apical palpomere, as do all members of the tribe Bembidiini. This study reviews four species belonging to the subgenus Plataphus, which is included within the genus Bembidion. Descriptions and photos of adults are provided.
        3.
        2024.04 구독 인증기관·개인회원 무료
        Currently, 12 subspecies of Coptolabrus smaragdinus have been recorded in Korea, of which 7 subspecies are listed in South Korea. C. smaragdinus has limited movement due to degenerated hindwings, resulting in high intraspecific diversity due to geographic isolation. Previous studies have been mainly classified based on external characters or genitalia structure, but the differences between subspecies are very ambiguous. In this study, we aimed to more clearly distinguish at the subspecific classification level, by examining the male aedeagal and inflated endophallus. Additionally, we provide photos of adult, endophallus and the process of endophallus inflation.
        4.
        2024.04 구독 인증기관·개인회원 무료
        The continuous use of pesticides with the same mode of action has lead to the development of insecticide resistance in the target pests. Establishing pesticide resistance management methods and effective control strategies for these pests has become an important target. Bemisia tabaci, a representative pest of greenhouse, directly affects the growth of crops at all stages of its development except eggs. It also causes indirect damage by secreting honeydew that eventually promotes sooty mold in leaves and fruits. In this study, eight insecticides with different mechanisms of action (Flonicamid, Fluxametamide, Spinetoram, Cyantraniliprole, Dinotefuran, Pyridaben, Milbemectin and Pyriproxyfen), and registered for use against cucumber B. tabaci were selected and tested for insecticide resistance. The tested populations of B. tabaci were collected from greenhouse cucumber cultivations in 12 domestic regions. The results were presented as RR (Resistance ratios), and CEI (Control efficacy index) values.
        10.
        2023.11 구독 인증기관·개인회원 무료
        Alpha activities can be used for categorization, transportation, and disposal of radioactive waste generated from the operation of nuclear facilities including nuclear power plants. In order to transport and dispose of such low- and intermediate-level radioactive waste (LILW) to the Wolsong LILW Disposal Center (WLDC) at Gyeongju, the gross alpha concentration of an individual drum should be determined according to the acceptance criteria. In addition, when the gross alpha concentration exceeds 10 Bq/g, the inventory of the comprising alpha emitters in the waste is to be identified. Gross alpha measurements using a proportional counter are usually straightforward, inexpensive, and high-throughput, so they are broadly used to assay the total alpha activity for environmental, health physics, and emergency-response assessments. However, several factors are thoughtfully considered to obtain a reliable approximate for the entire alpha emitters in a sample, which include the alpha particle energy of a particular radionuclide, the radionuclide that is used as a calibration standard, the uniformity of film in a planchet, time between sample collection and sample preparation, and time between sample preparation and counting. Korea Atomic Energy Research Institute (KAERI) have evaluated the inventory of radionuclides in low-level radioactive waste drums to send every year hundreds of them to the WLDC. In this presentation, we revisit the gross alpha measurement results of the drums transported to WLDC in the past few years and compare them with the concentrations of alpha emitters measured from alpha spectrometry and gamma spectrometry. This study offers an insight into the gross alpha measurement for radioactive waste regarding calibration source, self-absorption effect, composition of alpha emitters, etc.
        11.
        2023.11 구독 인증기관·개인회원 무료
        Spent ion exchange resins have been generated during the operation of nuclear facilities. These resins include radioactive nuclides. It is needed to fabricate them into a stable form for final disposal. Cement solidification process is a useful method for the fabrication of them into a waste form for final disposal. In this study, proper conditions for the fabrication of them into a stable waste form were determined using the cement solidification process. In-drum waste forms were then produced at the conditions, where the stability of representative samples was evaluated for final disposal. The samples were satisfied to the Waste Acceptance Criteria for low and intermediate level radioactive waste disposal sites. This result can be utilized to derive optimal conditions for the fabrication of spent ion exchange resins into a final disposal form.
        12.
        2023.11 구독 인증기관·개인회원 무료
        Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
        13.
        2023.10 구독 인증기관·개인회원 무료
        본 연구는 벼 화분에 잔류한 네오니코티노이드계 약제가 꿀벌 봉군 내로 유입하여 만성적으로 피해를 주는지 에 대해 실험적으로 검증하고자 한다. 벼 꽃 개화기에 맞춰 논 인근의 세 지역에 각 6개 봉군을 설치하였다. 3개의 지역 중 두 지역은 벼 꽃 개화기 항공 방제 수행지역이고, 1개 지역은 미수행 지역이다. 지역마다 봉군 3개에는 채분기를 설치하여 벌통 내 화분 유입을 차단한 그룹과 미설치 그룹 간 봉세와 꿀벌 면역 및 수명 관련 유전자 발현량을 비교하였다. 약제 방제가 수행된 지역에서 채분기를 설치한 봉군의 봉세는 미설치 봉군보다 상대적으 로 강한 것을 확인하였다. 또한, 약제 처리 지역에서 채분기 설치 봉군에서 채분기를 설치한 봉군의 봉세는 미설치 봉군보다 상대적으로 강한 것을 확인하였다. 또한, 약제 처리 지역에서 채분기 설치 봉군에서 채집된 꿀벌의 면역 및 수명 관련 유전자 발현량이 미설치 그룹과 차이가 있는 것을 확인하였다.
        14.
        2023.10 구독 인증기관·개인회원 무료
        생활권 수목이란 주민들이 생활하는 지역에 식재된 수목으로, 가로수, 학교수목, 아파트 수목 등 종류가 다양 하며 도시경관과 생활환경 개선의 이점을 제공한다. 그러므로 생활권 수목의 유지와 관리에 있어서도 인근 주민 에 혐오감이나 피해가 없도록 방제를 수행하는 것이 매우 중요하다. 일반적인 경엽살포의 경우, 약액 비산에 의해 주민들의 활동 제한, 안전사고 및 재산상 피해가 발생할 수 있으므로 사용이 제한적이다. 이러한 문제를 해결하기 위해, 나무에 약제를 직접 주입하는 나무주사(trunk injection)가 보편적인 생활권 수목 방제법으로 주목 받고 있으며, 이는 주입물질의 손실이 없고, 외부환경에 크게 영향 받지 않는다는 장점이 있다. 하지만 생활권 수목 전반에 대한 나무주사 처리방법이 명확하지 않아 약효가 일부 가지에서만 나타나는 등 사후 검증 및 관리가 미흡한 실정이다. 본 연구는 생활권 수목 병해충 방제 나무주사 제품의 효과제고를 위한 기존 처리방법 개선 및 최적의 약제처리 방법을 검증하였다. 느티나무외줄면충(Colopha moriokaensis)을 대상으로 시험을 진행하였 으며, Acetamiprid을 시험약제로 사용하였다. 느티나무에 대하여 약제처리 위치, 주입량, 천공수, 주사시기에 따른 약효 및 약해를 확인하였으며, 이를 바탕으로 최적의 약제처리 방법을 제시하였다.
        15.
        2023.10 구독 인증기관·개인회원 무료
        The rate of resistant pest emergence has accelerated due to the continuous use of pesticides. Therefore, it is important to formulate insecticide resistance management measures and effective control methods for pest. Bemisia tabaci, a greenhouse pest, causes direct damage to crops such as growth inhibition and leaf discoloration at all developmental stages except for eggs. It also indirectly damages plants by secreting honeydew, which covers surrounding leaves and fruits, leading to sooty mold development. In this study, eight insecticides with high usage rates, categorized by their mode of action, were selected. Samples of Bemisia tabaci were collected from six regions, and resistance analysis were conducted. The results showed that Flonicamid exhibited a resistance ratio of 8.91 in Sejong, while Pyriproxyfen showed a high resistance ratio of 63.56 in Gunwi. Fluxametamide, Spinetoram, Cyantraniliprole, Dinotefuran, Pyridaben, and Milbemectin displayed resistance ratio ranging from 0.02 to 1.14 in most regions, except for Flonicamid and Pyriproxyfen.
        16.
        2023.10 구독 인증기관·개인회원 무료
        The utilization of methyl bromide (MB) for quarantine purposes has been hampered by its designation as an ozone-depleting substance under the Montreal Protocol. The International Plant Protection Convention's (IPPC) call for alternatives to MB and a reduction in its usage. There is an urgent need to explore and implement substitutes. Despite some substitute agents like EDN being developed for wood, EDN has been limited due to various factors such as occupational risks. This study focuses on evaluating the efficacy of Sulfuryl Fluoride (SF) as a viable alternative fumigant against Reticulitermes speratus, one of major wood destroying pests. Experimental trials conducted at ambient temperature (23°C) revealed promising results, with SF demonstrating LCT50 and LCT99 values of 30.87 mg·h/L and 42.53 mg·h/L, respectively. Under low-temperature conditions (5°C), SF remained effective but with slightly higher LCT50 and LCT99 values of 151.62 mg·h/L and 401.90 mg·h/L, respectively. The penetration test, conducted using R. speratus-infested pine wood cubes, further highlighted SF's efficacy, with LCT50 and LCT99 values of 31.59 mg·h/L and 53.34mg·h/L at 23°C, indicating powerful penetration capabilities. When tested at a loading ratio of 90% (v/v) at 5.0mg/L for 24 hours in a 500L chamber as a middle-scale trial, SF achieved a 100% mortality, showing its potential as a suitable replacement for MB. These findings suggest that SF could open new markets as an MB substitute and enhance safety at quarantine sites when applied to imported and exported timber.
        18.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the commercialization of hydrogen energy, a technology enabling safe storage and the transport of large amounts of hydrogen is needed. Porous materials are attracting attention as hydrogen storage material; however, their gravimetric hydrogen storage capacity (GHSC) at room temperature (RT) is insufficient for actual use. In an effort to overcome this limitation, we present a N-doped microporous carbon that contains large proportion of micropores with diameters below 1 nm and small amounts of N elements imparted by the nitrogen plasma treatment. The N-doped microporous carbon exhibits the highest total GHSC (1.59 wt%) at RT, and we compare the hydrogen storage capacities of our sample with those of metal alloys, showing their advantages and disadvantages as hydrogen storage materials.
        4,000원
        19.
        2023.05 구독 인증기관·개인회원 무료
        Zirconium(Zr) alloys are commonly used in the nuclear industry for applications such as fuel cladding and pressure tubes. To minimize the levels and volumes of radioactive waste, molten salts have been employed for decontaminating Zr alloys. Recently, a two-step Zr metal recovery process, combining electrolysis and thermal decomposition, has been proposed. In the electrolysis process, potentiostatic electrorefining is utilized to control the chemical form of electrodeposits(ZrCl). Although Zr metals are expected to dissolve into molten salts, reductive alloy elements can also be co-dissolved and deposited on the cathode. Therefore, a better understanding of the anodic side’s response during potentiostatic electrorefining is necessary to ensure the purity of recovered Zr and long-term process operation. As the first step, potentiodynamic polarization curves were obtained using Zr, Nb, and Zr-Nb alloy to investigate the anodic dissolution behavior in the molten salts. Nb, which has a redox potential close to Zr, and Zr exhibit active or passivation dissolution mechanisms depending on the potential range. It was confirmed that Zr-Nb alloy also has a passivation region between -0.223 to -0.092 V influenced by the major elements Zr and Nb. Secondly, active dissolution of Zr-Nb was performed in the range of -0.9 to -0.6 V. The dissolution mechanism can be explained by percolation theory, which is consistent with the observed microstructure of the alloy. Thirdly, passivation dissolution of Zr, Nb, and Zr-Nb alloy was investigated to identify the pure passivation products and additional products in the Zr-Nb alloy case. K2ZrCl6 and K3NbCl6 were identified as the pure passivation products of the major elements. In the Zr-Nb alloy case, additional products, such as Nb and NbZr, produced by the redox reaction of nanoparticles in the high viscous salt layer near the anode, were also confirmed. The anodic dissolution mechanism of Zr-Nb alloy can be summarized as follows. During active dissolution, only Zr metal dissolves into molten salts by percolation. Above the solubility near the anode, passivation products begin to form. The anode potential increases due to the disturbance of passivation products on ion flow, leading to co-dissolution of Nb. When the concentration of Nb ion exceeds the solubility, a passivation product of Nb also forms. In this scenario, a high viscous salt layer is formed, which traps nanoparticles of Zr metal, resulting in redox behavior between Zr metal and Nb ion. Some nanoparticles of Zr and Nb metal are also present in the form of NbZr.
        20.
        2023.05 구독 인증기관·개인회원 무료
        During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
        1 2 3 4 5