검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2012.09 구독 인증기관 무료, 개인회원 유료
        The present study was conducted to develop a simple method for porcine oocyte maturation without CO2 regulation. In experiment 1, we evaluated that the effect of CO2 non-supplement on porcine oocyte maturation. Cumulusoocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three groups (Control, tube-CO2, and tube-non-CO2). For control, COCs were cultured in 4-well multidish in a CO2 incubator. For tube-CO2, COCs were cultured in a round-bottom tube in a CO2 incubator, and for tube-non-CO2, COCs were cultured in a round-bottom tube sealed tightly without CO2 supplement in a dry incubator. The proportion of oocytes reached to metaphase II (M-II) was not significantly different among three groups (87.9% to 91.4%). In experiment 2, we evaluated the effect of CO2 non-supplement during oocyte maturation on development of embryos. Oocytes with a polar body were divided into two groups (Control and tube-non-CO2) and applied 1.1 kV/cm or 1.2 kV/cm voltages for parthenogenetic activation. After activation, embryos were cultured for 6 days and examined the development. The proportion of embryos cleaved was not significantly different among treatment (86.3% to 91.5%). The proportion of embryo reached to blastocyst stage was not significantly different among treatment (13.9% to 25.2%). The cell number of blastocysts was not significantly different among treatment (29.0 to 32.4). In conclusion, oocytes cultured in a dry incubator without CO2 supplement have enough competence to development after parthenogenetic activation. These results would be useful for transporting oocytes or embryos a long distance.
        4,000원
        2.
        2010.09 구독 인증기관 무료, 개인회원 유료
        Correlations between cumulus cells and germinal vesicle (GV) chromatin configuration were examined in porcine oocytes. Cumulus-oocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three categories according to cumulus cell morphology. "A" group was compacted COCs with more than three cumulus cell layers. "B" group was COCs with less cumulus cell layers than "A" group. "C" group was COCs with one or less layer of cumulus cells. Cumulus cells were removed 0.1% hyaluronidase, and denuded oocytes were stained with Hoechst 33342. GV chromatin configuration was classified into GV-Con and GV-Dis. GV-Con meant that a nucleus was surrounded by condensed chromatin in a ring. GV-Dis meant that filamentous chromatin clumps were distributed in nucleus. The proportion (80.2%) of GV-Con in "A" group was significantly higher than "B" (62.0%) or "C" (44.9%). The proportion (55.1%) of GV-Dis in "C" group was significantly higher than "A" (19.8%) or "B" (38.0%). The meiotic competence of COCs was examined after 44 h culture. The proportion (90.0%) of oocytes reaching to metaphase II (M-II) in "A" group was significantly higher than "B" (76.5%) or "C" (45.5%). In conclusion, oocytes with good quality cumulus cell layers are synchronized early GV stage, and early GV stage is important for meiotic competence in pigs.
        4,000원
        4.
        2003.09 서비스 종료(열람 제한)
        Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. Many efforts have made characterization of GGTA1 in structure and function, improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTAl gene by Missouri group in 2002 To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. Of other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.