검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        21.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the application of soil stabilization method for soft shoulder construction in the iRoad Project of Sri Lanka. METHODS: Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Two different stabilizers, ST-1 and ST-2, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task. RESULTS: It is found from the UCS testing that a 3% use of soil stabilizer can improve the strength up to 2~5 times in stabilized soft shoulder soils with respect to unstabilized soils. It is also observed from UCS testing that the ST-1 shows high strength improvement in 3% of stabilizer content but the strength improvement rate with increase of stabilizer content is relatively low compared with ST-2. The ST-2 shows a low UCS value at 3% of content but the UCS values increase significantly with increase of stabilizer content. When using the ST-2 as stabilizing agent, the 5% is recommended as minimum content based on UCS testing results. Based on the testing results for bottom ash replacement, the stabilized sample with bottom ash shows the low strength value. CONCLUSIONS: This paper is intended to check the feasibility for use the soil stabilization technique for shoulder construction in Sri Lanka. The use of soil stabilizer enables to improve the durability and strength in soft shoulder materials. When applying the bottom ash as a soil stabilizer, various testings should be conducted to satisfy the specification criteria.
        4,000원
        22.
        2018.05 구독 인증기관·개인회원 무료
        In Sri Lanka, the shoulder in asphalt pavements has been constructed using the materials transported from borrow pit in the iRoad Project due to the low quality of in-situ soils. After excavating 150~200mm thick and 500mm wide shoulder area, the borrow pit materials are placed and compacted according to specifications. The excavated in-situ soils are dumped in designated location. It is estimated that this process of shoulder construction is not economical due to high material transportation cost and can also induce the environmental issues by disposal of in-situ soils. It can also cause distresses such as surface rutting and edge drop-off in soft shoulder section due to bearing capacity failure and off-tracking of vehicle. The heavy rainfall in Sri Lanka can induce severe erosion problem when using the soft shoulder. To improve the strength and durability of pavement shoulders in the iRoad Project, the soil stabilization will be a good alternative to solve the above mentioned problems. The use of in-situ soils with addition of soil stabilizer enables to reduce the construction cost of shoulder section and mitigate the environment issues. The objective of this task is to review the application of soil stabilization method for soft shoulder construction in the iRoad Project. Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Three different stabilizers, ST-1, ST-2, and ST-3, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task.
        23.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS: A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5 m*0.3 m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.
        4,000원
        24.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study was to determine the relationship between the dielectric characteristics of asphalt mixtures and the air voids present in them using ground penetrating radar (GPR) testing. METHODS : To measure the dielectric properties of the asphalt mixtures, the reflection coefficient method and the approach based on the actual thickness of the asphalt layer were used. An air-couple-type GPR antenna with a center frequency of 1 GHz was used to measure the time for reflection from the asphalt/base layer interface. A piece of aluminum foil was placed at the interface to be able to determine the reflection time of the GPR signal with accuracy. An asphalt pavement testbed was constructed, and asphalt mixtures with different compaction numbers were tested. After the GPR tests, the asphalt samples were cored and their thicknesses and number of air voids were measured in the laboratory. RESULTS: It was found the dielectric constant of asphalt mixtures tends to decrease with an increase in the number of air voids. The dielectric constant values estimated from the reflection coefficient method exhibited a slight correlation to the number of air voids. However, the dielectric constant values measured using the approach based on the actual asphalt layer thickness were closely related to the asphalt mixture density. Based on these results, a regression equation to determine the number of air voids in asphalt mixtures using the GPR test method was proposed. CONCLUSIONS: It was concluded that the number of air voids in an asphalt mixture can be calculated based on the dielectric constant of the mixture as determined by GPR testing. It was also found that the number of air voids was exponentially related to the dielectric constant, with the coefficient of determination, R2, being 0.74. These results suggest that the dielectric constant as determined by GPR testing can be used to improve the construction quality and maintenance of asphalt pavements.
        4,000원
        1 2