검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7°C) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.
        4,000원
        2.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to apply with an air duct for the cooling and a utilizing cultivating method that uses the fruiting node and the defoliation to the high-temperature vertical and hydroponic cultivation of the oriental melon. The lower fruiting node (LF) was to remove all third vines generated from 5 nodes of a secondary vine. The higher fruiting node (HF) was fruiting on the third vine generated from a first node of the third vine. The direction of the stem string; upward (UW), downward (DW). Four treatment conditions were applied with the LF-UW, LF-DW, HF-UW (control), and HF-DW. The leaf age of melon leaves was measured for photosynthesis at 3 days intervals, and the fruit characteristic was conducted on 79 fruits in each treatment. The photosynthesis rate steadily increased after leaf development, reaching 20.8 μmol CO2·m-2·s-1 on the 10 days, gradually increasing to 21.3 μmol CO2·m-2·s-1 on the 19 days, and reaching 23.4 μmol CO2·m-2·s-1 on the 32 days. After that, it lowered to 16.8 μmol CO2·m-2·s-1 on the 38 days and dropped significantly to 7.6 μmol CO2·m-2·s-1 on the 47 days. As a result of the fruit characteristics by fruiting nodes, the treatments of the fruit length was 12.6-13.4 cm, respectively, which was significant, and the fruit width was 7.9- 8.6 cm, respectively, was not significant. The soluble content ranged from 12.9 to 15.7°Brix, and the significance of all treatments, and higher than of LF-DW and HF-UW. The photosynthesis rate of melon leaves was good until 32 days after leaf development, but after that, the rate decreased. As for fruit quality, it was conformed that melons can be cultivated at the LF because the fruit enlargement and soluble content dose not decrease even when set at the LF. Results indicated that those can be used for LF and defoliation in the development of vertical and hydroponic cultivation method in high-temperature season.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 딸기재배시 전용 고설베드를 사용하지 않고, 일 반 수경재배 시설을 이용하여 코이어 배지를 베드에 올려 재 배하는 방법을 구명하기 위해서 실시하였다. 토마토나 파프 리카를 재배하는 시설재배 베드에 코이어의 칩과 더스트 비율 이 5:5인 코이어 배지 1겹 처리(높이 10cm; A), 2겹으로 쌓은 처리(높이 20cm; B), 코이어의 칩과 더스트 비율이 7:3인 코 이어 배지 1겹 처리(높이 15cm; C)와 대조구로는 딸기 전용 플라스틱 화분(Control) 처리구로 하였다. 생육특성은 코이 어 배지 높이별로는 유의성이 없었고, 플라스틱 화분에서 재 배한 것이 작은 경향을 보였다. 딸기 잎의 광합성율은 처리별 로 14.68-15.76μmol CO2·m-2·s-1로 통계적인 유의성은 없 었고, 뿌리의 근활력은 배지 용량이 컸던 C와 B 처리구가 A 처리구와 대조구보다는 높은 것으로 나타났다. 과장과 과폭 은 각각 4.04-4.13cm와 3.26-3.34cm로 통계적인 유의성 이 없었고, 과장과 과폭 비율은 대조구가 1.27로 A-C 처리 구의 1.23-1.24보다 뾰쪽한 형태이었다. 딸기 1주당 수확과 수는 C 처리구가 4.4개로 가장 적었고, 대조구, A, B 처리구의 6.2-6.5개로 처리간 유의성은 없었다. 상품수량 과수는 A 처 리구가 74개로 가장 많았고, C 처리구가 53개로 가장 적었으 며, 1주당 수량은 A 처리구가 72.38g으로 가장 컸고, C 처리 구가 48.69g으로 가장 작았다. 이와 같은 결과는 딸기재배 시 전용재배 시설을 설치하지 않고, 기존의 토마토나 파프리카 수경재배 시설에서 코이어 배지를 활용하여 딸기재배를 할 수 있다는 것을 나타낸다. 다만 C 처리구에서 수량이 감소한 것 은 칩과 더스트 비율이 7:3으로, A와 B 처리구의 칩과 더스트 비율이 5:5와 다른 것이 원인으로 추정되며 칩과 더스트 비율 에 따른 추가 연구가 필요하다.
        4,000원
        6.
        2020.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ETc 손실을 보상하는데 필요한 물의 양을 작물 용수 요구량(Crop water requirement, CWR)로 정의되며, ETc 평가는 작물 필요 요구량을 정확하게 정량화하는 데 필요하며, 물 균형 계산에서 중요한 역할을 한다. 토마토와 파프 리카의 실제 관수 요구량(Actual crop water, ACW)이 적절한 CWR인지 평가하였다. 토마토와 파프리카 재배에 적정한 AWC 예측 및 추정을 위하여 온실 내부 환경데이터를 Penman-Monteith을 이용하여 기준 작물 증발산(ET)을 계산한 후, 기준 증발산은 작물 상수(Kc;토마토-1.15, 파프리카-1.05)계수로 조정하였다. 토마토와 파프리카의 CWR과 ACW를 계산하여 비교 평가한 결과 ACW가 CWR을 대체할 수 있지만 파프리카의 ACW는 필요 이상으로 높게 나타났다. 또한, 토마토의 ACW는 1일 100 ~ 1,200 ml이고, 파프리카의 ACW는 1일 100 ~ 500 ml가 적절한 것으로 나타났다. 그러나, 스마트 온실에서 ETc의 정밀도를 높이려면, ETc가 CWR로 변환되고 ACW와 비교하기 위해서 클래스 A팬 설정이 필요하다. 향후 실시간으로 CWR을 측정하기 위한 시뮬레이션 프로그램 연구가 필요하다.
        4,000원
        7.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 태양광 기반으로 인공광 병렬 광공급 시스템을 개발하고 상추 재배효과를 구명하기 위하여 수행하였다. 태양광 기반으로 인공광원을 공급하는 장치는 광원 공급부, 전원 공급부, 시스템 계측 및 제어부로 구성하였다. 광원공급부는 태양광 전송장치(광파이버)와 LED 램프(인공광)로 구성하였고, 태양광 전송장치는 광 전송률이 우수한 석영재질의 광섬유(Optical fiber)로 제작되었으며, 인공광은 LED 중 White 램프를 사용하였다. 전원 공급부는 누전 차단기, SMPS, LED 제어기 및 릴레이로 구성하였다. 시스템계측 및 제어부는 터치스크린과 지그비(ZigBee) 통신모듈, 광량센서로 구성하였다. 구성한 장치의 성능시험 결과 광량센서로 측정된 강도가 200μmol·m-2·s-1 이하가 되면 자동적으로 LED 램프가 작동되어 보광하는 것을 확인하였다. 또한 본 장치를 활용하여 상추를 재배한 결과, 엽장, 뿌리길이, 엽록소 함량 및 지하부 생체중이 LED 처리보다 큰 것으로 나타났다. 따라서 본 장치 는 화석연료 고갈 등으로 전기 사용에 제한이 올 때 폐쇄형 식 물공장 같은 시설에서 작물을 재배할 수 있을 것으로 판단된다.
        4,000원
        9.
        2008.12 구독 인증기관 무료, 개인회원 유료
        The techniques of IVM, IVF and IVC of canine oocytes may provide useful information for gamete salvage programs and the conservation of endangered canidae. This investigation has been made to determine the efficiency of in vitro maturation (IVM) as a basic experiment to study the development of canine oocytes after in vitro fertilization (IVF). The rate of oocytes developing to the MII stage was higher in the hormone treated group (10 IU/ml hCG+eCG, 14.7%, p<0.05) than in the control group (0 IU/ml hCG+eCG, 10.0%). The monospermy and pronuclear rates of canine oocytes were investigated after caffeine treatment on IVF. Canine oocytes were fertilized in the Fert‐TALP medium supplemented with 0, 10, 20 or 30 mM caffeine (Fert I, Fert II, Fert III or Fert IV, respectively). The highest pronuclear formation rate was obtained in the Fert I for 24 h IVF (6.7%, 6/89). Therefore, it is believed that unlike in other mammals, caffeine in canine IVF does not increase the efficiency of fertilization rate, and is not an important factor.
        4,000원
        10.
        2021.08 KCI 등재 서비스 종료(열람 제한)
        Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mSꞏcm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.
        11.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to analyze the light traits in a solar light-collector device and its effects on lettuce growth at an early growth stage. The three hyper parameters used were the reflector diameter (2 cm and 4 cm), coating inside the reflector (chrome-coated, non-coated) and distance from the light fiber (15 cm and 20 cm). The results showed that light efficiency, which is the ratio of light intensity inside the fiber to the solar intensity, improved by 41.1 % when using a 2 cm diameter chrome-coated reflector at a distance of 15 cm from the light fiber; whereas it only improved by 20.6% when a non-coated reflector was used. As the reflector size was increased to 4 cm, the light efficiency for the coated and non-coated reflectors increased by 28.5 % and 26.4 %, respectively, hence, no significant difference was observed. When the light fiber was placed at a distance of 20 cm, the increase in light efficiency with coating treatment was 8 % higher than without coating treatment. We also compared the efficiency of light-fiber treatment with that of LED treatment in our lettuce nursery, and observed that the plants exhibited better growth with light-fiber treatment. We observed an average increase of 1.7 cm in leaf height, 7 cm2/plant increase in leaf area, and 32 mm increase in root length upon light-fiber treatment as opposed to those observed with LED treatment. These findings indicate that the collector light-fiber is economically feasible and it improves lettuce growth compared with the LED treatment.
        12.
        2019.09 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to determine the effects of different compositions of environmental substrates on hydroponic tomato cultivation. Three different substrates were used in coir chip:dust (v/v=50:50; CP1), coir chip:dust (v/v=80:20; CP2), and rock wool cube with CP2 (CPR). The amount of irrigation during the cultivation period was 190 mL/(plant·time) in all substrates. The pH and EC were 5.8-6.2 and 2.6-2.9 dS/m, respectively. The drainage rate in CP1 was 31%, in CP2 was 36%, and in CPR was 29%. The growth of tomato plants in terms of height was higher in CP1 and CPR. The leaf area was greater in CP2. The fresh and dry weights were greater in CP2 and CPR treatments. The net photosynthesis in CP2 (19.31 μmol CO2/m2s) and root activity in CP2 were higher among all three treatments. The soluble solid content of fruit was not significantly different among treatments. The yield per plant in CP2 and CPR treatments was 17% greater than the yield per plant in CP1. Therefore, the most suitable substrate for hydroponic tomato cultivation is the substrate mixed with coir chip:dust (v:v=80:20; CP2), i.e., CPR.
        13.
        2019.05 KCI 등재 서비스 종료(열람 제한)
        In this study, a solar light collector that collects and transmits solar light required for crop production in a closed plant production system was developed. The solar light collector consisted of a Fresnel lens for collecting solar light, and a tracking actuator for tracking solar light from sunrise to sunset to increase the light collection efficiency. The optical fiber that transmitted solar light was made of Glass Optical Fiber (GOF), and it had an excellent optical transmission rate. After collecting the solar light, the amount of light was measured at 5, 10, 15, 20, 25, and 30 cm distances from the GOF through the darkroom by using a light sensor logger connected to a quantum and pyranometer sensor. Compared with solar light, the light intensity of pyranometer sensor measured at 5 cm was 114% higher than solar light, and 61% at 10 cm. In addition, it was observed that it is possible to transmit the necessary amount of light for growing crops up to about 15 cm (as over 22%) through GOF. Therefore, adding diffusers to the solar light collector should be expected to replace artificial light in plant factories or plug seedlings nurseries for leafy vegetables. More studies on the solar light collection devices and the light transmission devices that have high light collection efficiency should be conducted.