검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.10 구독 인증기관·개인회원 무료
        As drone technology and industry develop around the world, the use of drones are increasing in number and expanding to different fields. On the other hand, illegal flight and terrorist incidents using drones are also increasing day by day. In Korea, it is reflected in the “Design Basis Threat (DBT)”, which is the standard for designing and evaluating the physical protection system of nuclear power plants in accordance with the “Act on Physical Protection and Radiological Emergency”, that nuclear power plants continue to establish physical protection against drone threats. A total of 141 drone attacks or incidents have occurred around the world since 2015. Cases related to the Russian-Ukraine war, in which so many cases occurred, were excluded. There were 112 cases (79%) of terrorism or suspected terrorism using a single drone. There were 4 cases of terrorism using more than 5 drones, and a total of 20 drones were used to attack an oil facility in Yemen (2019). By region, a total of 111 incidents occurred in Middle East & North Africa. By country, there were 49 cases in Iraq, 35 cases in Saudi Arabia, and 8 cases in Syria. Among major countries, three cases occured in Korea, five in the United States, two in England, Canada, and Italy, and one in Japan and France. Since 2021, there have been 15 drone attacks. Multiple drones were used in attacks targeting military or large-scale Important National Facilities such as the Saudi oil refinery, Indian Kashmir air base, and reconnaissance of Iranian Natanz nuclear and surrounding military facilities. Also in 89% of the cases, the drones were loaded with explosives in order to cause large-scale damage. Accordingly, nuclear power plants, which are important national facilities, need to establish a system that can detect and respond to multiple drones. Furthermore, additional protective measures are needed for areas that are expected to be severely damaged which can be established by evaluating the impact of explosives on major points in the plant. In additionthere is a high possibility of terrorism by organizations aiming for national turmoil rather than individual terrorists. So it is important to identify signs of terrorism in advance and prepare through cooperation with related agencies.
        2.
        2022.10 구독 인증기관·개인회원 무료
        UAVs (Unmanned Aerial Vehicle) are a rising threat to national facilities due to their cheap price and accessibility. Incidents such as the terrorism attack in Saudi Arabia’s oil facilities and the paralysis of the airport system in England’s Gatwick airport shows the need for integrating CUAS (Counter- Unmanned Aerial Systems) in important national facilities. Recently efforts have been made to evaluate the technical performance of the CUAS. Especially SNL (Sandia National Laboratory) modified the methodology used for PPS (Physical Protection Systems) to develop a performance metrics for CUAS. The performance metrics can be used to effectively analyze the facilities capability of countering drone attacks in a probabilistic way. In this study, we managed to derive the safety boundary of a reference nuclear power plant model based on its current CUAS and protection capabilities with a simplified methodology. Based on the outermost boundary of the model, the time table of the UAS consist of 4 variables which are the assessment time, transmission time, neutralization time and the maximum vehicle velocity. Dividing the maximum velocity to the net time derived, we estimated the minimum sensing point of the CUAS which is the minimum safety boundary of the facility to safely manage the UAV attack. Two practice cases were evaluated with the methodology which is based on the UAV groups classified by the United States DOD (Department Of Defense) that matches the classification of the UAV in Korea. Each variable was assumed to fit the process of a realistic nuclear power plant. Using the variables, we calculated the minimum safety boundary of the facility. With the methodology introduced in this study, regulators and stakeholders can easily evaluate the capability of the facilities CUAS for a design basis UAV attack. Also it can be used as a simple tool to analyze the facilities vulnerability for specific UAV specifications and a guideline to check the protective procedures of the facility.