검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        In this study, the relationship between the pore size distribution and the adsorption amount of adsorbates is investigated in detail. Adsorption amounts of non-polar adsorbates were greater than those of polar adsorbates because of slight negative charge on surfaces of adsorbents. The adsorption of benzene on the surface of absorbents was largely influenced by the specific pore size of 2~4 times of benzene diameter. But in case of toluene, the adsorption of toluene was affected by pore sizes of 2~4 times as well as 4~6 times of the diameter of toluene. Both acetone and MEK were examined by the same method. The adsorption of acetone was influenced by pore sizes of 2~4 times of the diameter of acetone. But acetone does not look to be built up multi-layer on those pore sizes. Since acetone molecule is small and its mobility is so fast, it is assumed that the adsorption and desorption of acetone is simultaneously occurred at the same time even at room temperature. In case of MEK, MEK was effected by pore sizes of 2~4 times of the diameter of MEK.
        2.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        This study is to investigate the relationship between pore structures of activated carbons and adsorption characteristics of toluene vapor using dynamic adsorption method. The surface areas of below 10Å in the pore diameter of activated carbons used in this experiment were in the range of 72~93% of total cumulative surface area and the toluene vapor equilibrium adsorption capacities were in the range of 350~390mg/g. Activated carbons having larger toluene adsorption capacity than the compared activated carbons had relatively pores in the pore diameter range of 7~10Å. Linear relationship between equilibrium adsorption capacity and cumulative surface area was in the diameter range of over 7Å. It was thought that toluene vapor was relatively well adsorbed on surfaces of pores of over 7Å.
        3.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        Activated carbons were prepared from Korean coal by steam activation in this study. The variation of pore structure of the activated carbons were investigated according to different carbonization temperatures. Yield, surface area, pore volume and pore structure of this activated carbon were compared with those of activated carbon prepared without carbonization. The investigated carbonization temperature ranged from 700℃ to 1,000℃. Carbonization was carried out in nitrogen atmosphere for 70 minutes and activation was performed by steam at 950℃ for 210 minutes. Surface area and pore volume of the resulting activated carbons increased with carbonization temperature. Also pore volume increased by 20% compared to the activated carbon without carbonization. Especially, in mesopore region, the activated carbon carbonized at 900℃ had more pores by 60% than that of activated carbon carbonized at other temperature.
        4.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        Activated carbons were prepared from Youngwall coal by steam activation in this study. The feasibility of the Youngwall coal to commercial activated carbon was examined. The variation of pore structures and the development of porosity in activated carbons were investigated by changing activation conditions in batch type apparatus. The values of BET surface area and adsorption capacity of iodine and methylene blue of the resulting activated carbons were obtained as high as 1,000㎡/g, 900㎎/g, 150㎖/g, respectively. Youngwall activated carbon prepared in this study showed much higher pore volume in pore diameter over l0Å than that of commercial reference activated carbon(Ningxia Taihua ZJ-15C) produced from China anthracite.
        5.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        The variation of microorganisms (activated sludge, Saccharomyces cerevisiae, Aureobasidium pullulans) caused by the biosorption of Pb2+ was observed by TEM and microscope. By the TEM observation of S. cerevisiae, the plasmolysis and lysis of cell wall or cell membrane were occurred by the penetration of Pb2+ into the inner cellular region. However, in the case of A pullulans, the plasmolysis and lysis of cell wall or cell membrane were not occurred because of the prevention of Pb2+ penetration by the extracelluar polymeric substances (EPS). A flocculation of microorganisms, in the case of A. pullulans, was observed by the Pb2+ accumulation after 3∼4 h and the color was changed from white to black after 1 day. The flocculation of activated sludge was improved by the accumulation Pb2+ after 1 h, however, the floc was broken up and the settling efficiency decreased after 1 day.
        6.
        1995.08 KCI 등재 서비스 종료(열람 제한)
        Continuous deodorization of malodorous sulfur compounds by Thiobacillus neapolitanus R-10 immobilized onto a polypropylene pellet was studied using a column reactor at 30℃. The maximum amounts of immobilized cells was 5.3 g/ℓ polypropylene with 5 × 7.5㎜ in pellet size, and the amounts of immobilized cells in the higher part of the column was as twice as in the lower part. The optimum pH and temperature for removal of dimethyl sulfide were 6.0 and 30℃, respectively. When 5-20 ㎕/ℓ of hydrogen sulfide and methylmercaptan were employed 98% of removal efficiency were achieved. In contrast, lower concentrations of dimethyl sulfide and dimethyldisulfide should be supplied to meet satisfactory deodorization efficiency. The immobilized cell column was successfully operated for the deodorization of mixture of sulfur compounds over 15 days without significant loss of initial activity achieving high efficiency.
        7.
        1995.08 KCI 등재 서비스 종료(열람 제한)
        Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50 % because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5㎏COD/㎥/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as 200 ㎛ and 0.08 g/㎤, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.
        8.
        1995.06 KCI 등재 서비스 종료(열람 제한)
        Thiobacillus neapolitanus R-10 isolated from sludge of night soil, showed an oxidizing activity on several malodorous sulfur compounds. The microbe successfully utilized hydrogen sulfide(H_2S), methy mercaptan(MM), dimethyl sulfide(DMS) and dimethyldisulfide(DMDS) during the batch culture reaction, of which H_2S was rather rapidly oxidized. To examine the ability for removal of malodorous sulfur compounds, various concentrations of sulfide substrates were supplemented separately to basal medium and their responses were investigated. As the concentration of sulfide was increased, growth was accelerated within three days of cultivation. 2.5mM was the most favorable substrate concentration of sulfide added for all cases tested. However, when the concentration of sulfur compounds were raised over 4mM, they behaved as a growth inhibitor.
        9.
        1994.09 KCI 등재 서비스 종료(열람 제한)
        A detachment of biofilm was investigated in an inverse fluidized bed biofilm reactor(IFBBR). The biofilm thickness, δ and the bioparticle density, ρ_pd were decreased by the increase of Reynolds number, Re and the decrease of biomass concentration, b_c. The correlations were expressed as δ=61.6+16.33b_c-0.04Re and p_pd=0.3+0.027b_c- 2.93x10 exp (-5)Re by multiple linear regression analysis method. Specific substrate removal rate, q was derived by F/M ratio and biofilm thickness as q=0,44+0.82F/M-5.1x10 exp (-4)δ. Specific biofilm detachment rate, b_ds, was influenced by F/M ratio and Reynolds number as b_ds=-0.26+0.26F/M+2.17x10 exp (-4)Re. Specific biofilm deachment rate in an IFBBR was higher than that in a FBBR(fluidized bed biofilm reactor) because of the friction between air bubble and the bioparticles.
        10.
        1994.03 KCI 등재 서비스 종료(열람 제한)
        Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000㎎/ℓ for 1st reactor, and 2500㎎/ℓ for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor, the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.
        11.
        1993.12 KCI 등재 서비스 종료(열람 제한)
        A mathematical model for organic removal efficiency was investigated in a fluidized bed biofilm reactor by changing the feed flow rate, the residence time and the recycle flow rate. In batch experiment, organic removal could be assumed as first order and an intrinsic first order rate constant(kl) was found 6.4 x 10 exp (-6) ㎤/㎎ sec at influent COD range of 3040 - 6620 ㎎/L. In continuous experiment, at the condition of the influent COD, 3040 ㎎/L, the superficial upflow velocity, 0.47 ㎝/sec, the biofilm thickness 336 ㎛ and the biofilm dry density 0.091 g/mL, the calculated COD removal efficiency from the mathematical model gave 60 % which was very close to the observed value of 66 %. As the feed flow rate was increased, the COD removal efficiency was sharply decreased and at constant feed flow rate, the COD removal efficiency was decreased also as the residence time being decreased.
        12.
        1993.12 KCI 등재 서비스 종료(열람 제한)
        A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 ㎝/sec and temperature, 22±1 ℃, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/㎥·day, respectively. Within the F/M ratio ranged 0.4 to 2.0 ㎏COD/㎏VSS·day, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 ㎏COD/㎏VSS·day, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSS·day. The average biomass concentrations were 7800, 14950 and 27532 ㎎/l on the organic shock loading rate of 3.5, 10.8 and 33 ㎏COD/㎥·day, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.
        13.
        1993.12 KCI 등재 서비스 종료(열람 제한)
        Methane production from grain dust was studied using a 3 L laboratory-scale anaerobic plug flow digester. The digester was operated at; temperature of 35, 45, and 55℃ hydraulic retention time(HRT) of 6 and 12 days; and influent concentration(S_0) of 7.8 and 9.0 % total solids(%TS). With ten different operation conditions, this study showed the significant effects of temperature, hydraulic retention time, and influent concentration on methane production, The highest methane-production rate achieved was 1.903 (L methane) /(L digester)(day) at 55℃, 6 days HRT, and S_0 of 7.8 %TS. A total of 3.767 L of biogas per day with a methane content of 50.57% was obtained from this condition. The ultimate methane yield(B_0 was found to be a function of temperature and influent concentration, and was described as : B_0= 0.02907T-0.1263-0.00297(T-10)(%TS), where TS is the total solids in the liquid effluent, and T is temperature(℃). Our results showed that thermophilic condition is better than mesophilic for grain dust stabilization in an anaerobic plug flow digester.