검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        The first commercial operation of Kori-1, which commenced in April 1978, was permanently shut down in June 2017, with plans for immediate dismantling. The decommissioning process of nuclear power plants generates a substantial amount of radioactive waste and poses significant radiation exposure risks to workers. Radioactivity is widely distributed throughout the primary coolant system of the reactor, including the reactor pressure vessel (RPV), steam generator (SG), and pressurizer. In particular, the SG has a considerable size and complex geometry, weighing approximately 326 tons and having a volume of 400 m3. The SG tubes are known to contain high levels of radioactivity, leading to significant radiation exposure to workers during the dismantling process. Therefore, this study aims to evaluate the workers’ radiation exposure during the cutting of SG tubes, which account for approximately 95% of the total radiation dose in the SG. Firstly, the CRUDTRAN code, developed to predict the behavior of soluble and particulate corrosion products in a PWR primary coolant system, is used to estimate the radioactive inventory in the SG tubes. Based on decontamination factors (DF) obtained in the SG tubes through overseas experience, the expected reduction in radioactivity during the Kori-1 reactor’s full-system decontamination (FSD) process is considered in the CRUDTRAN results. These results are then processed to estimate the radioactivity in both the straight and bent sections of the tubes. Subsequently, these radioactivity values are used as inputs for the MicroShield code to calculate the worker radiation exposure during the cutting of both straight and bent sections of the tubes. The cutting process assumes that each SG tube section is cut in a separate, shielded area, and the radiation exposure is assessed, taking into account factors such as cutting equipment, cutting length, working hours, and working distance. This study evaluates the worker radiation exposure during the cutting of SG tubes, which are expected to have a significantly high radioactivity due to chalk river unidentified deposit (CRUD). This assessment also considers the reduction in radioactivity within the steam generator tubes resulting from the FSD process. Consequently, it enables an examination of how worker radiation exposure varies based on the extent of FSD. This study may provide valuable insights for determining the scope and extent of the FSD process and the development of shielding methods during the dismantling of SG tubes in the future.
        2.
        2023.05 구독 인증기관·개인회원 무료
        A bilateral Nuclear Cooperation Agreement (NCA) should define what is subject to the agreement and when. Nuclear Materials (NM) are the subject of NCA with almost all countries, and the definition used in these agreements is borrowed from Article 20 of the IAEA Charter. The IAEA’s definition of NM as consisting of special fissionable material and source material and describes the types of material each contains. In order to control the export of NM under national laws and implement NCA, not only the types of NM but also quantitative criteria are required. This is because controlling small quantities of NM is impossible, unnecessary, and would create excessive administrative burdens. For this reason, the NSG guidelines establish a quantitative threshold of NM requiring control. Nevertheless, no quantitative thresholds have been agreed upon for NM subject to a NCA. Whether NM transferred is subject to the NCA is primarily a matter for the supplier states to determine. The supplier states make the decision based on quantitative criteria defined in their own export control laws. ROK identifies NM that require export licenses by reflecting the same criteria as the NSG guidelines in Foreign Trade Laws and its Notifications. Less than 500 kg of Natural Uranium, 1,000 kg of Depleted Uranium, 1,000 kg of Thorium, and 50 effective grams of special fissionable materials do not require an export license and is therefore not subject to NCA. In the US, the quantitative threshold for requiring an export license is different from that of ROK. For example, special fissionable materials that are not Pu are required if the individual shipment exceed 1 effective gram or 100 effective grams per year. The difference in the quantitative thresholds for NM between the two countries mean that the same item may be subject to NCA under US standards, but not under ROK’s. For example, the export of 8 grams of highly enriched uranium (93%) contained in a neutron detector would not be subject to the NCA in ROK, but would be considered NM subject to a NCA and required a special license in the US. Of course, in order to ensure the application of safeguards and physical protection to all NM transferred between the two countries, the agreement may not include a quantitative threshold for NM. However, the absence of such a threshold can lead to different conclusions by the two countries on the same item and make it challenging to control retransfers. The definition of quantitative standards will be necessary in the supplementary administrative arrangement for the practical control and management of NM subject to the NCA.