검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 20

        2.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.
        4,000원
        5.
        2017.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The well-known solar cycle controls almost the entire appearance of the solar photosphere. We therefore presume that the continuous emission of visible light from the solar surface follows the solar cyclic variation. In this study, we examine the solar cyclic variation of photospheric brightness in the visible range using solar images taken by the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI). The photospheric brightness in the visible range is quantified via the relative intensity acquired from in the raw solar images. In contrast to total solar irradiance, the relative intensity is out of phase with the solar cycle. During the solar minimum of solar cycles 23--24, the relative intensity shows enhanced heliolatitudinal asymmetry due to a positive asymmetry of the sunspot number. This result can be explained by the strength of the solar magnetic field that controls the strength of convection, implying that the emission in the visible range is controlled by the strength of convection. This agrees with the photospheric brightness increasing during a period of long spotless days.
        4,000원
        9.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oil spills have occurred throughout the years of industrialization and represent a global challenge as they affect vast areas of the ocean. The toxicity of crude oil to aquatic organisms has been extensively investigated, but the potential impacts of crude oil on vertebrate development remain largely unknown. Here, we investigated the effects of dispersants used in treating a recent oil spill, as well as that of crude oil, on vertebrates by using the zebrafish (Danio rerio) model species, which has been widely used in empirical studies of both early embryonic development and adult physiology. Chronic exposure to crude oil resulted in marked developmental abnormalities, including pericardial edema, abnormal trunk vessel development, retardation of axonal branching, and abnormal jaw development. Embryonic development was affected more severely by exposure to the oil-dispersant combination than to the oil alone. Thus, the zebrafish in vivo model system suggests that dispersant treatment can have detrimental developmental effects on vertebrates and its potential impact on marine life, as well as humans, should be carefully considered in clean-up efforts at the site of an oil spill.
        4,000원
        11.
        2020.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Muons and neutrons are representative secondary particles that are generated by interactions between primary cosmic ray particles (mostly protons) and the nuclei of atmospheric gas compounds. Previous studies reported that muons experience seasonal variations because of the meteorological effects of temperature. The intensity of neutrons has a typical modulation with various periods and reasons, such as diurnal and solar variation or transient events. This paper reports that cosmic ray particles, which were observed by neutron monitors, have seasonal variations using the daily data at the Oulu neutron monitor. To eliminate the effects of solar activity across time, the daily data were normalized by two different transformations: transformations with respect to the grand mean and yearly mean. The data after transformation with respect to the yearly mean showed more statistical stability and clear seasonal variations. On the other hand, it is difficult to determine if the seasonal variation results from terrestrial effects, such as meteorological factors, or extraterrestrial effects, such as the position of the Earth in its orbit of revolution.
        12.
        2018.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Cosmic rays are ions that move at relativistic speeds. They generate secondary cosmic rays by successive collisions with atmospheric particles, and then, the secondary particles reach the ground. The secondary particles are mainly neutrons and muons, and the neutrons are observed by the ground neutron monitor. This study compared the diurnal variation in cosmic ray intensity obtained via harmonic analysis and that obtained through the pile-up method, which was examined in a previous study. In addition, we analyzed the maximum phase of the diurnal variation using four neutron monitors with a cutoff rigidity below approximately 6 GV, located at similar longitudes to the Oulu and Rome neutron monitors. Expanding the data of solar cycles 20–24, we examined the time of the maximum cosmic ray intensity, that is, the maximum phase regarding the solar cyclic modulation. During solar cycles 20–24, the maximum phase derived by harmonic analysis showed no significant difference with that derived by the pile-up method. Thus, the pile-up method, a relatively straightforward process to analyze diurnal variation, could replace the complex harmonic analysis. In addition, the maximum phase at six neutron monitors shows the 22-year cyclic variation very clearly. The maximum phase tends to appear earlier and increase the width of the variation in solar cycles as the cutoff rigidity increases.
        13.
        2018.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Jang Bogo Station (JBS), the second Korean Antarctic research station, was established in Terra Nova Bay, Antarctica (74.62°S 164.22°E) in February 2014 in order to expand the Korea Polar Research Institute (KOPRI) research capabilities. One of the main research areas at JBS is space environmental research. The goal of the research is to better understand the general characteristics of the polar region ionosphere and thermosphere and their responses to solar wind and the magnetosphere. Ground-based observations at JBS for upper atmospheric wind and temperature measurements using the Fabry-Perot Interferometer (FPI) began in March 2014. Ionospheric radar (VIPIR) measurements have been collected since 2015 to monitor the state of the polar ionosphere for electron density height profiles, horizontal density gradients, and ion drifts. To investigate the magnetosphere and geomagnetic field variations, a search-coil magnetometer and vector magnetometer were installed in 2017 and 2018, respectively. Since JBS is positioned in an ideal location for auroral observations, we installed an auroral all-sky imager with a color sensor in January 2018 to study substorms as well as auroras. In addition to these observations, we are also operating a proton auroral imager, airglow imager, global positioning system total electron content (GPS TEC)/scintillation monitor, and neutron monitor in collaboration with other institutes. In this article, we briefly introduce the observational activities performed at JBS and the preliminary results of these observations.
        14.
        2018.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Moon mineralogy mapper (M3)'s work proved that the moon is not completely dry but has some hydroxyl/water. M3’s data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using M3 data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.
        15.
        2017.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The sun is not equally bright over the whole sphere, but rather is darkened toward the limb. This effect is well-known as limb darkening. The limb darkening coefficient is defined by the ratio of the center intensity to limb intensity. In this study, we calculate the limb darkening coefficient using the photospheric intensity estimated from solar images taken by solar and helispheric observatory (SOHO) and solar dynamics observatory (SDO). The photospheric intensity data cover almost two solar cycles from May 1996 to December 2016. The limb darkening coefficient for a size of 0.9 diameter is about 0.69 and this value is consistent with solar limb darkening. The limb darkening coefficient estimated from SOHO shows a temporal increase at solar maximum and a gradual increase since the solar minimum of 2008. The limb darkening coefficient estimated from SDO shows a constant value of about 0.65 and a decreasing trend since 2014. The increase in the coefficient reflects the effect of weakened solar activity. However, the decrease since 2014 is caused by the aging effect.
        16.
        2016.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In December 2015, we have installed neutron monitors at the Jang Bogo station in Antarctica. The Jang Bogo station is the second science station which is located at the coast (74° 37.4´S, 164° 13.7´E) of Terra Nova Bay in Northern Victoria Land of Antarctica. A neutron monitor is an instrument to detect neutrons from secondary cosmic rays collided by the atmosphere. The installation of neutron monitor at Jang Bogo station is a part of transferred mission for neutron monitor at McMurdo station of USA. Among 18 tubes of 18-NM64 neutron monitor, we have completed relocation of 6 tubes and the rest will be transferred in December 2017. Currently, comparison of data from the neutron monitors of both two stations is under way and there is a good agreement between the data. The neutron monitors at Jang Bogo station will be quite useful to study the space weather when the installation is completed.
        17.
        2015.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism – Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than –30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.
        18.
        2015.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Forbush Decreases (FD) are transient, sudden reductions of cosmic ray (CR) intensity lasting a few days, to a week. Such events are observed globally using ground neutron monitors (NMs). Most studies of FD events indicate that an FD event is observed simultaneously at NM stations located all over the Earth. However, using statistical analysis, previous researchers verified that while FD events could occur simultaneously, in some cases, FD events could occur non-simultaneously. Previous studies confirmed the statistical reality of non-simultaneous FD events and the mechanism by which they occur, using data from high-latitude and middle-latitude NM stations. In this study, we used long-term data (1971-2006) from middle-latitude NM stations (Irkutsk, Climax, and Jungfraujoch) to enhance statistical reliability. According to the results from this analysis, the variation of cosmic ray intensity during the main phase, is larger (statistically significant) for simultaneous FD events, than for non-simultaneous ones. Moreover, the distribution of main-phase-onset time shows differences that are statistically significant. While the onset times for the simultaneous FDs are distributed evenly over 24- hour intervals (day and night), those of non-simultaneous FDs are mostly distributed over 12-hour intervals, in daytime. Thus, the existence of the two kinds of FD events, according to differences in their statistical properties, were verified based on data from middle-latitude NM stations.
        19.
        2014.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        There was a research on the prolongation of solar cycle 23 by the solar cyclic variation of solar, interplanetary geomagnetic parameters by Oh & Kim (2013). They also suggested that the sunspot number cannot typically explain the variation of total solar irradiance any more. Instead of the sunspot number, a new index is introduced to explain the degree of solar activity. We have analyzed the frequency of sunspot appearance, the length of solar cycle, and the rise time to a solar maximum as the characteristics of solar cycle. Then, we have examined the predictability of solar activity by the characteristics of preceding solar cycle. We have also investigated the hemispheric variation of flare index for the periods that the leading sunspot has the same magnetic polarity. As a result, it was found that there was a good correlation between the length of preceding solar cycle and spotless days. When the length of preceding solar cycle gets longer, the spotless days increase. It is also shown that the shorter rise time to a solar maximum is highly correlated with the increase of sunspots at a solar maximum. Therefore, the appearance frequency of spotless days and the length of solar cycle are more significant than the general sunspot number as an index of declining solar activity. Additionally, the activity of flares leads in the northern hemisphere and is stronger in the hemisphere with leading sunspots in positive polarity than in the hemisphere with leading sunspots in negative polarity. This result suggests that it is necessary to analyze the magnetic polarity’s effect on the flares and to interpret the period from the solar maximum to solar maximum as the definition of solar cycle.
        20.
        2013.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth’s magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.