검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        1.
        2023.05 구독 인증기관·개인회원 무료
        Corrosion-related challenges remain a significant research topic in developing next-generation Molten Salt Reactors (MSRs). To gain a deeper understanding of preventing corrosion in MSRs, previous studies have attempted to improve the corrosion resistance of structural alloys by coating surfaces such as alumina coating. To conduct a corrosion test of coating alloys fully immersed in molten salt, it’s important to ensure that the coating application process is carefully carried out. Ideally, coating all sides of the alloy is necessary to avoid gaps like corners of the alloy, while only applying a one-sided coating alloy can lead to galvanic corrosion with the base metals. Using the droplet shape of eutectic salt applied to only one side of the coating alloy would avoid these problems in conventional corrosion immersion tests, as corrosion would occur solely on the coating surface. Although the droplet method for corrosion tests cannot fully replicate corrosion in the MSRs environment, it offers a valuable tool for comparing and evaluating the corrosion resistance of different coating surfaces of alloys. However, the surface area is important due to the effect of diffusion in the corrosion of alloy in molten salt environments, but it is difficult to unify in the case of droplet tests. Therefore, understanding the droplet-alloy properties and corrosion mechanism is needed to accurately predict and analyze these test systems’ behavior highlighting unity for corrosion tests of different coating surfaces of alloys. To analyze the molten salt droplet behavior on various samples, pelletized eutectic NaCl-MgCl2 was prepared as salt and W-, Mo-coating, and base SS316 as samples. At room temperature, the same mass of pelletized eutectic NaCl-MgCl2 was placed on different samples under an argon atmosphere and heated to a eutectic point of 500°C in a furnace. After every hour, the molten droplets were hardened by rapid cooling at room temperature outside the furnace. The mass loss of salts and the contact area of the samples were measured by mass balance and SEM. The shape, surface area to volume ratio, and evaporation of the droplets of NaCl-MgCl2 per each coating sample and hour were analyzed to identify the optimal mass to equalize the contact coating surface of alloys with salts. Furthermore, We also analyzed whether their results reached saturation of corrosion products through ICP-MS. This will be significant research for the uniformity of the liquid-drop shape corrosion test of the coating sample in molten eutectic salts.
        2.
        2023.05 구독 인증기관·개인회원 무료
        LiCl-KCl eutectic possesses unique properties such as a low melting point, high thermal conductivity, and good electrical conductivity. These properties make it suitable for various applications, including nuclear power generation, pyroprocessing in nuclear waste management, and thermal energy storage systems. In most experiments using LiCl-KCl, the molten salt composition is an important factor; therefore, periodic analysis through sampling is necessary for monitoring compositional changes. Although manual sampling is typically used, it is time-consuming and can introduce errors due to low reproducibility. To address this issue, we have developed an automatic molten salt sampling device using the cold-finger method. This method involves immersing the tip of a tungsten rod in hightemperature LiCl-KCl, removing it after a few seconds, and allowing the adhered molten salt to solidify instantly. A collector then scratches and drops the solidified sample. These processes are carried out automatically using servo motors, enabling the sampling device to move around the molten salt system. We have optimized the sampling conditions, such as insertion and withdrawal rate, immersion time, and the interval between continuous sampling, based on the molten salt temperature. The temperature was set between 500°C and 850°C, considering the operating temperatures of the applications. In addition to sampling speed, the sampling depth is a key condition for determining the sampling mass. Therefore, we examined the amount of sample depending on the sampling depth and, particularly, considered the change in salt height when sampling is performed continuously. As a result, we determined the number of sampling iterations required to reach the target sample mass. Furthermore, to minimize the initial salt loss, we noted that sampling from the salt surface resulted in less representative samples. To determine the reliability, we compared the results of surface sampling with those obtained when sampling at the middle of the salt. This study will enable highly reproducible and reliable sampling by providing a prototype for an automatic sampling device for molten salt along with guidelines.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Measuring the concentration of corrosion products or nuclear fission products (FPs) in molten salts is crucial for pyroprocessing and molten salt reactors. Electrochemical analysis methods that can be performed in situ offer significant advantages for monitoring the concentration of corrosion products or FPs in molten salts. A microelectrode is an electrode with a length of several tens of micrometers on one side. The use of a microelectrode for electrochemical analysis has several advantages due to its small size, including rapidly reaching the limiting current regardless of the scan rate, immediate attainment of the limiting current upon applying an overpotential for instant monitoring within milliseconds, accurate measurement even in low convection systems, a small iR drop resulting from low flowing current and high signal accuracy, and high current density resulting in a high signal-tonoise ratio (SNR). Among various methods for making microelectrodes, techniques involving cutting a thin wire or using capillaries (such as the dual-bore capillary and pulled glass capillary methods) require precise manual skills and experience. Therefore, the results may vary depending on the maker’s skill level, and it can be difficult to control the electrode’s area, thickness, and surface uniformly. Recent research has focused on using semiconductor processes to fabricate microelectrodes, where CVD, metal sputtering, photolithography, and etching processes work together to deposit, refine, and shape the required material on a silicon wafer to create microelectrodes. However, the durability of microelectrodes produced this way is still low (usable for about 15-30 minutes), and there is no clear research on the degradation mechanism over time. To verify the proper operation of the fabricated microelectrodes, cyclic voltammetry (CV) is performed at various scan rates (from 10 mVs-1 to 2 Vs-1), and chronoamperometry (CA) is also examined to confirm whether the electrodes rapidly reach a steady-state current. After confirming their proper operation, CV is continuously measured until the microelectrodes are destroyed in a LiCl-KCl solution containing a small amount of FPs (Sm 340 mM) at 450°C. By observing changes in the electrical signal of the microelectrodes over time, the durability is evaluated, and the mechanism of performance degradation of the electrode is discovered. The experiment is then repeated by gradually increasing the temperature by 30°C from 450°C up to 600°C to observe the changes with temperature. This study provides basic information for future microelectrode experiments, and by diagnosing the cause of destruction, a more durable microelectrode structure can be manufactured.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Molten salt reactors have several advantages over conventional light water reactors. These include producing less nuclear waste, operating at higher power efficiency and inherent safety due to the low operating pressure. NaCl-MgCl2 eutectic salt is one of the candidates for the molten salt reactor coolant. However, because the salt is very hygroscopic, structural material corrosion occurs resulting in the high cost to maintain. To mitigate corrosion there have been many studies for the dehydration of the salt, especially focusing on the magnesium chloride. The reason is that the moisture adsorbed to the magnesium chloride undergoes hydrolysis over 200 degrees Celsius and decomposes to MgOHCl while the moisture associated with the NaCl is easily liberated during the heating procedure without chemical reaction. As the operating temperature of the molten salt is between 500 and 700 degrees Celsius, the MgOHCl is believed as the main cause for the structural corrosion. In this research, thermal dehydration of the salt with elemental Mg, for the NaCl-MgCl2 eutectic, was studied based on the previous dehydration methods and considering scalable and easy to handle. The MgOHCl was removed both through the thermal decomposition and the reduction by Mg metal. After the removal of MgOHCl, based on the difference between the freezing points and the density, the salt cooled down very slowly to ensure the separation between the purified salt and the disposals such as MgO and remaining Mg metals. The efficiency of the dehydration method was determined by the concentration of the MgOHCl. The concentration was determined by cyclic voltammetry and the result was compared with undehydrated salt and salt dehydrated thermally without the addition of Mg metal. To qualify and quantify the MgOHCl content through the cyclic voltammetry, it was necessary to observe the signal by adding MgOHCl to each sample. Based on the thermogravimetric analysis result of MgCl2· 6H2O, MgOHCl powder was formed through heating the MgCl2·6H2O.
        5.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive wastes, including used nuclear fuel and decommissioning wastes, have been treated using molten salts. Electrochemical sensors are one of the options for in-situ process monitoring using molten salts. However, in order to use electrochemical sensors in molten salt, the surface area must be known. This is because the surface area affects the current of the electrode. Previous studies have used a variety of methods to determine the electrode surface area in molten salts. One method of calculating the electrode surface area is to use the reduction current peak difference between electrodes with known length differences. The method is based on the reduction peak and has the benefit of providing long-term in-situ monitoring of surfaces immersed in molten salt. A number of assumptions have been made regarding this method, including that there is no mass transport by migration or convection; the reaction is reversible and limited by diffusion; the chemical activity of the deposit should be unity; and species should follow linear diffusion. For the purpose of overcoming these limitations, a variety of machine learning algorithms were applied to different voltammogram datasets in order to calculate the surface area. Voltammogram datasets were collected from multiarray electrodes, comprising a multiarray holder, two tungsten rods (1 mm diameter) working electrodes, a quasi-reference electrode, and a counter electrode. The multiarray electrode holder was connected to the auto vertical translator, which uses a servo motor, for changing the height of the rod in the molten salts. To make big and diverse data for training machine learning models, various concentrations of corrosion products (Cr, Fe) and fission products (Eu, Sm) in NaCl-MgCl2 eutectic salts were used as electrolyte; electrolyte temperatures were 500, 525, 550, 575, and 600°C. This study will demonstrate the potential of utilizing machine learning based electrochemical in situ monitoring in molten salt processing.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Aluminum’s exceptional properties, such as its high strength-to-weight ratio, excellent thermal conductivity, corrosion resistance, and low neutron absorption cross-section, make it an ideal material for diverse nuclear industry applications, including aluminum plating for the building envelope of nuclear power plants. However, plating aluminum presents challenges due to its high reactivity with oxygen and moisture, thus, complicating the process in the absence of controlled environments. Plating under an inert atmosphere is often used as an alternative. However, maintaining an inert atmosphere can be expensive and presents an economic challenge. To address these challenges, an innovative approach is introduced by using deep eutectic solvents (DES) as a substitute for traditional aqueous electrolytes due to the high solubility of metal salts, and wide electrochemical window. In addition, DESs offer the benefits of low toxicity, low flammability, and environmentally friendly, which makes DESs candidates for industrial-scale applications. In this study, we employed an AlCl3-Urea DES as the electrolyte and investigated its potential for producing aluminum coatings on copper substrates under controlled conditions, for example, current density, deposition duration, and temperature. A decane protective layer, non-polar molecular, has been used to shield the AlCl3-Urea electrolyte from the air during the electrodeposition process. The electrodeposition was successful after being left in the air for two weeks. This study presents a promising and innovative approach to optimizing aluminum electrodeposition using deep eutectic solvents, with potential applications in various areas of the nuclear industry, including fuel cladding, waste encapsulation, and radiation shielding.
        7.
        2022.10 구독 인증기관·개인회원 무료
        Molten salts based on magnesium chloride can be used in the nuclear power reactor because they have a high heat capacity and heat stability, and allow for a faster neutron spectrum. However, magnesium chloride is highly hygroscopic, leading to the formation of moisture-related impurities, which result in the corrosion of structural materials and negatively affect the operation of the reactor. The dehydration of magnesium chloride is studied using both thermal and electrochemical treatments. According to previous studies, water impurities in magnesium chloride molten salt transform into magnesium oxide over 650 degrees Celsius. The temperature profile of the molten salt is suggested to separate magnesium chloride and magnesium oxide, focusing on cooling rate near the freezing point of magnesium chloride. Two layers separated by a phase boundary on the salt surface appear due to the density difference between magnesium oxide and magnesium chloride. Further, the removal of oxide ions remaining in the molten salt is carried out by electrochemical treatment. Two different cells, each consisting of two electrodes, are used. One cell is composed of graphite anode and nickel cathode. The other is composed of tin oxide anode and nickel cathode. As the reaction proceeds, carbon dioxide and oxygen are generated in graphite and tin oxide, respectively, and magnesium electrodeposition occurs at the cathode. The amount of purified magnesium oxide is measured to the endpoint, which is notified by the reduced current. The efficiency of each method is compared by measuring the weight ratio of the purified part to the unpurified part. Thermogravimetric analyzer (TGA) and UV-vis spectroscopy are used to check the quality of the purified part. Only magnesium oxide remains at a temperature above the boiling point of magnesium chloride. Therefore, the amount of magnesium oxide in the purified part can be measured by the mass change of the salt through the TGA method. For UV-vis spectroscopy, the transmittance is measured which depends on the weight percent of the impurities in the purified part. The suggested purification method using both thermal and electrochemical treatment is assessed quantitatively and qualitatively. It is expected that hygroscopic molten salts other than magnesium chloride will be able to be dehydrated through the above process.
        8.
        2022.10 구독 인증기관·개인회원 무료
        Molten chloride salts are promising candidates as a coolant for Molten Salt Reactors (MSRs) because of their low cost, high specific heat transfer, and thermal energy storage capacity. The NaCl- MgCl2 eutectic salts have enormous latent heat (430 kJ/kg) and financial advantage over other types of molten chloride salt. Despite the promise of the NaCl-MgCl2 eutectic salt, problems associated with structural material corrosion in the MSR system remain. The hygroscopicity of NaCl-MgCl2 and high MSRs operating temperature accelerate corrosion within structural alloys. Especially, MgCl2 reacts with H2O in the eutectic salt to produce HCl and Cl2, which are known to further exacerbate corrosion by the chlorination of structural materials. Therefore, several studies have worked to purify impurities associated with MgCl2, such as H2O. Thermal salt purification of NaCl-MgCl2 eutectic salt is one method that reduces HCl and Cl2 gas generation. However, MgO and MgOHCl are generated as the byproduct of thermal purification through a reaction between MgCl2 and H2O. The corrosion behavior of MgO within structural alloys after thermal treatment is not well known. This paper demonstrates corrosion behavior within structural alloy after thermal treatment at various temperature profiles of the NaCl-MgCl2 eutectic salt. According to the temperature range, MgCl2·H2O are separated at 100~200°C, and MgOHCl and HCl begin to occur at 240°C or higher. Finally, MgOHCl produces MgO and HCl at 500°C or higher temperatures. After thermal treatments, the H2O, MgOHCl, and MgO content were measured by Thermo Gravimetric Analyzer (TGA) to evaluate significant products causing corrosion. The structural materials were analyzed by the Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) and using the mass change method to observe the type of localized corrosion, the corrosion rate, and the corrosion layer thickness. This study is possible in that it can reduce economic costs by reducing the essential use of expensive, high-purity molten salts because it is related to a substantial financial cost problem considering the amount of molten salt used in industrial sites.
        9.
        2022.10 구독 인증기관·개인회원 무료
        During electrorefining, fission products, such as Sr and Cs, accumulate in a eutectic LiCl-KCl molten salt and degrade the efficiency of the separation process by generating high heat and decreasing uranium capture. Thus, the removal of the fission products from the molten salt bath is essential for reusing the bath, thereby reducing the additional nuclear waste. While many studies focus on techniques for selective separation of fission products, there are few studies on processing monitoring of those techniques. In-situ monitoring can be used to evaluate separation techniques and determine the integrity of the bath. In this study, laser-induced breakdown spectroscopy (LIBS) was selected as the monitoring technique to measure concentrations of Sr and Cs in 550°C LiCl-KCl molten salt. A laser spectroscopic setup for analyzing high-temperature molten salts in an inert atmosphere was established by coupling an optical path with a glove box. An air blower was installed between the sample and lenses to avoid liquid splashes on surrounding optical products caused by laser-liquid interaction. Before LIBS measurements, experimental parameters such as laser pulse energy, delay time, and gate width were optimized for each element to get the highest signal-to-noise ratio of characteristic elemental peaks. LIBS spectra were recorded with the optimized conditions from LiCl-KCl samples, including individual elements in a wide concentration range. Then, the limit of detections (LODs) for Sr and Cs were calculated using calibration curves, which have high linearity with low errors. In addition to the univariate analysis, partial least-squares regression (PLSR) was employed on the data plots to obtain calibration models for better quantitative analysis. The developed models show high performances with the regression coefficient R2 close to one and root-mean-square error close to zero. After the individual element analysis, the same process was performed on samples where Sr and Cs were dissolved in molten salt simultaneously. The results also show low-ppm LODs and an excellent fitted regression model. This study illustrates the feasibility of applying LIBS to process monitoring in pyroprocessing to minimize nuclear waste. Furthermore, this high-sensitive spectroscopic system is expected to be used for coolant monitoring in advanced reactors such as molten salt reactors.
        10.
        2022.05 구독 인증기관·개인회원 무료
        Decontamination of spent nuclear fuel from decommissioned nuclear reactors is crucial to reduce the volume of intermediate-level waste. Fuel cladding hulls are one of the important parts due to high radioactivity. Their decontamination could possibly enable reclassification as low-level waste. Fuel cladding hulls used in research reactors and being developed for conventional light water reactors are Al-Mg and Fe-Cr-Al alloys, respectively. Therefore, the recovery of these component metals after decontamination is necessary to reduce the volume of highly radioactive waste. Electrochemical approach is often chosen due to its simplicity and effectiveness. Non-aqueous solvents, such as molten salts (MSs) and ionic liquids (ILs), are preferred to aqueous solvents due to the absence of hydrogen evolution. However, MSs and ILs are limited by high temperature and high synthesis cost, along with toxicity issues. Deep eutectic solvents (DESs) are synthesized from a hydrogen bond acceptor (HBA) and donor (HBD) and exhibit outstanding metal salt solubility, wide electrochemical window, good biocompatibility, and economic production process. These characteristics make DES an attractive candidate solvent for economic, green, and efficient electrodeposition compared with aqueous solvents such acids or nonaqueous solvents such as MSs or ILs. In this research, the feasibility of electrodeposition of Al-Mg and Fe-Cr-Al alloys in ChCl:EG, the most common DES synthesized from choline chloride (ChCl) and ethylene glycol (EG), will be tested. A standard three-electrode electrochemical cell with an Au plated working electrode and Al wires for counter and reference electrodes is utilized. Two electrolyte solutions (Al-Mg and Fe-Cr-Al) are prepared by dissolving 100 mM of each anhydrous metal chloride salts (AlCl3, MgCl2, CrCl3, and FeCl2) in ChCl:EG. Cyclic voltammogram (CV) is measured at 5, 10, 15, and 20 mV·s−1 to observe the redox reactions occurring in the solutions. Electrodeposition of each alloy is performed via chronoamperometry at observed reduction potentials from CV measurements. The deposited surfaces and cross-sections are examined by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) to analyze the surface morphology, cross-section composition, and thickness. Authors anticipate that the presence of different metals will greatly affect the possibility of electrodeposition. It is expected that although all metals are distributed throughout the surface, the morphology, in terms of particle size and shape, would differ depending on metals. Different metals will be deposited by layers of an approximate thickness of a few μm each. This research will illustrate a potential for recovery and electrodeposition of other precious radioactive metals from DES.
        11.
        2022.05 구독 인증기관·개인회원 무료
        Cutting reactor pressure vessels (RPV) into acceptable sizes for waste disposal is a key process in dismantling nuclear power plants. In the case of Kori-1, a remote oxyfuel cutting method has been developed by Doosan Heavy Industry & Construction to dismantle RPVs. Cutting radioactive material, such as RPV, generates a large number of fine and ultrafine particles incorporating radioactive isotopes. To minimize radiological exposure of dismantling workers and workplace surface contamination, understanding the characteristics of radioactive aerosols from the cutting process is crucial. However, there is a paucity of knowledge of the by-products of the cutting process. To overcome the limitations, a mock-up RPV cutting experiment was designed and established to investigate the characteristics of fine and ultrafine particles from the remote cutting process of the RPV at the Nuclear Decommissioning Center of Doosan Heavy Industry & Construction. The aerosol measurement system was composed of a cutting system, purification system, sampling system, and measurement device. The cutting system has a shielding tent and oxyfuel cutting torch and remote cutting robot arm. It was designed to prevent fine particle leakage. The shielding tent acts as a cutting chamber and is connected to the purification system. The purification system operates a pressure difference by generating an airflow which delivers aerosols from the cutting system to the purification system. The sampling system was installed at the center of the pipe which connects the shielding tent and purification system and was carefully designed to achieve isokinetic sampling for unbiased sampling. Sampled aerosols were delivered to the measurement device. A high-resolution electrical low-pressure impactor (HR-ELPI+, Dekati) is used to measure the size distribution of inhalable aerosols (Aerodynamic diameter: 6 nm to 10 μm) and to collect size classified aerosols. In this work, the mock-up reactor vessel was cut 3 times to measure the number distribution of fine and ultrafine particles and mass distribution of iron, chromium, nickel, and manganese. The number distribution of aerosols showed the bi-modal distribution; two peaks were positioned at 0.01−0.02 μm and 0.04–0.07 μm respectively. The mass distribution of metal elements showed bi-modal and trimodal distribution. Such results could be criteria for filter selection to be used in the filtration system for the cutting process and fundamental data for internal dose assessment for accidents. Future work includes the investigations relationships between the characteristics of the generated aerosols and physicochemical properties of metal elements.
        15.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원전 해체 공정 중 다량의 콘크리트 방사성 폐기물의 절단 과정에서 불가피하게 방사성 에어로졸이 생성된다. 방사성 에어 로졸은 인체 호흡기 흡착에 의한 내부피폭을 유발하기 때문에 작업자의 방사선 방호를 위한 내부피폭평가가 필수적으로 시행되어야 한다. 그러나 실제 작업환경의 에어로졸 특성값을 사용하기에는 선행 연구가 미비하며 콘크리트에 포함된 방사성 핵종의 수가 많기 때문에 정확한 작업자 내부피폭평가를 위해서는 상당한 시간과 인력이 필요하다. 따라서, 본 연구에서는 사전 연구된 콘크리트 에어로졸 특성값을 활용하여 원전 해체 전 절단 작업자의 내부 피폭량을 빠르게 예측할 수 있는 새로운 방법론을 제시하고자 한다. 본 연구팀은 콘크리트 절단 시 발생하는 사전 연구에서 발표된 에어로졸의 수농도 크기 분포데이터를 뉴턴-랩슨법을 이용하여 피폭평가 계산에 필요한 방사능중앙 공기중역학직경(Activity Median Aerodynamic Diameter)값으로 변환하였다. 또한 원전 정지 10년 후 비방사능 값을 ORIGEN code로 계산하였으며, 최종적으로 핵종별 예 탁유효선량을 IMBA 프로그램을 이용하여 계산하였다. 핵종별 예탁유효선량값을 비교한 결과 152Eu에 의한 최대 예탁유효선량은 전체 선량값의 83.09%를 차지하고, 152Eu를 포함한 상위 5개 원소(152Eu, 154Eu, 60Co, 239Pu, 55Fe)의 경우 최대 99.63%를 차지함을 확인하였다. 따라서 원전 해체 전 콘크리트의 구성 원소 중 상위 5개 주요 원소 측정을 먼저 시행한다면 더 빠르고 원활한 방사능 피폭관리 및 해체 작업 안전성 평가가 가능할 것으로 판단된다.
        4,200원
        20.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 프랙탈 부호화시 변환식의 계수를 찾는 과정에서 블럭의 탐색영역을 줄이기 위해 탐색영역인 도메인 블럭의 특성을 화소의 밝기의 평균에 의한 클래스와 분산에 의한 클래스로 분류하여 리스트를 구성한 후 레인지 블럭과 같은 클래스를 가지는 도메인 블럭만 검색하도록 하면서 도메인 블록 탐색시 1차 허용 오차 한계값을 제어하여 리스트 탐색시 RMS값에 일정 허용오차 이내의 값을 가지면 리스트를 끝까지 탐색하지 않고 변환값을 결정하도록 하여 부호화 시간을 향상시켰다. 또한 퀴드트리 분할법으로 레인지 블럭의 크기를 가변시켜 변환(wi)의 수를 줄임으로서 압축효율을 높이고 도메인 레인지 블럭의 크기에 따라 탐색 영역의 탐색 밀도와 허용오차를 변화시켰을 때 화질 개선여부를 검토하였다. 제안된 방법으로 부호화한 결과 부호화 시간은 허용오차의 범위에 따라 향상되며 압축효과는 높아졌고 PSNR값은 다소 떨어졌으나 거의 무시할 수 있을 정도의 변화가 있었다.
        1 2