검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        Bentonite, primarily composed of montmorillonite, plays a crucial role as one of the engineering barrier materials in a deep geological repository (DGR). The advantageous properties of montmorillonite, such as its swelling capacity, low permeability, and low thermal conductivity, make it a key component as a buffer material for isolating high-level radioactive waste from the surrounding natural environment. It has been known that the stability of montmorillonite is influenced by a wide range of pressure-temperature-composition (P-T-X) conditions relevant to the DGR environment. When considering potential geological events, of notable concerns are its interactions with groundwater or seawater at elevated temperatures, leading to safety hazards within the system. In this study, therefore, we investigated the hydration and dehydration reactions of Ca-montmorillonite with saline fluids such as NaCl and KCl solutions at elevated pressures and temperatures by conducting in-situ X-ray diffraction experiments using both a capillary sample heating cell and a resistive-heated diamond anvil cell. As a result, we observed different hydration states of montmorillonite depending on the chemical composition of fluids, i.e., tri-hydrated layers in NaCl and bi-hydrated layers in KCl solutions, respectively. Furthermore, we identified that montmorillonite undergoes distinct stepwise dehydration with increasing temperature, and the dehydration temperature of montmorillonite significantly increases with increasing water pressure. Consequently, this study would provide insights into the stability of hydrated montmorillonite in a seawater-dominated fluid environment and its implications for the long-term safety of the disposal system.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Natural analogue studies aim to understand specific processes or to make predictions regrading formation processes or environmental conditions based on information from natural phenomena on Earth. Studying geological environments similar to the disposal system can help evaluate the longterm stability of the disposal system. These studies play a crucial role in evaluating the long-term stability of deep geological repositories (DGRs) for high-level radioactive wastes, which must remain stable for extended periods. In particular, bentonite, as a vital buffer material in DGRs, is mainly composed of montmorillonite and undergoes a transformation into zeolite under specific environmental conditions, resulting in the loss of its role as a buffer material in terms of swelling property and hydraulic conductivity. In this study, bentonite samples from Pohang Basin in Korea were investigated, revealing the presence of montmorillonite and zeolite in both outcrop and drilling core samples. While it has been known that montmorillonite and zeolites can form from volcanic glass through diagenesis or hydrothermal alteration, this study revealed that these minerals are formed under distinct environmental conditions. The outcrop samples primarily consisted of montmorillonite with minor quantities of cristobalite and amorphous silicate minerals. In contrast, the drilling core samples were composed of montmorillonite, zeolites, quartz and feldspar, indicating different mineral assemblages and characteristics between the outcrop and drilling samples. This observation suggests different environmental conditions during the mineral formation process. Therefore, various experiments and analytical methods were employed to gain a deeper understanding of the phase transformation from montmorillonite to zeolites under diverse environmental conditions