Warm compaction powder metallurgy was used to produce a Ti3SiC2 particulate reinforced Cu matrix composite. Fabrication parameters and warm compaction behaviors of Cu powder were studied. Based on the optimized fabrication parameters a Cu-based electrical contact material was prepared. Results showed that in expend of some electrical conductivity, addition of Ti3SiC2 particulate increased the hardness, wear resistivity and anti-friction ability of the sintered Cu-base material.
The introduction of ceramic particulate into metallic powder will unavoidably lower the compressibility and formability of the mixed powder. In this study, warm compaction, which is a simple and low cost technique to produce high density PM parts, was introduced in preparing composite. The aim of this paper is to prepare the warm compacted NbC particulate reinforced Fe-based composite, then study its tribological behavior and application in the valve-guide cup. A 15 wt.% NbC reinforced iron-based composite was prepared. It possesses a relative density of 98%, a tensile strength of 515 MPa, a hardness of HRC 58 and a remarkable tribological behavior.