컨테이너보험은 컨테이너보험계약에 의하여 실현되는데, 컨테이너보험계약 은 보험자가 미리 작성한 컨테이너보험계약의 내용을 피보험자인 컨테이너소 유자가 사실상 포괄적으로 받아들여서 계약이 체결되는 일종의 부합계약의 성 격을 가진다. 컨테이너보험계약에서 사용되는 정형화된 계약내용을 인쇄문구 로 나타낸 조항을 총칭하여 컨테이너보험약관이라고 한다. 현재 전 세계적으로 영국의 런던보험자협회(Institute of London Underwriters : ILU)에서 제정한 협회컨테이너보험약관(Institute Container Clauses-Time)이 컨테이너보험계약 의 표준약관 또는 기본약관으로 가장 많이 사용하고 있다. 이와 같이 영국에서 제정한 협회컨테이너보험약관을 사용하기 때문에 컨테이너보험과 관련한 법률 문제 또한 영국의 법률과 관습에 따라 해결할 수밖에 없다. 그러나 협회컨테이 너보험약관에서 실제 사용되는 언어가 영어이기 때문에 협회컨테이너보험약관 의 내용을 정확하게 번역하기가 곤란하며, 설사 번역한다고 하더라도 각 약관 의 법적 의미 및 내용을 이해하는 데는 한계가 있다. 또한 현재 국내에서 컨테 이너보험을 다룬 논문 및 서적 등이 전무한 상태이며, 최근에는 컨테이너 금융 활성화의 일환으로 컨테이너보험의 활용을 제시하고 있다. 따라서 이 논문에서 는 컨테이너보험실무 담당자가 쉽게 이해하고 접할 수 있는 중요자료를 제공하 기 위하여 협회컨테이너보험약관의 주요 내용을 법해석론적으로 고찰하고자 한다.
Forecasting port container throughput is crucial due to its impact on economic development. Socio-economic factors, which introduce uncertainty, are increasingly integrated into throughput forecasting. The complexity of common multivariate forecasting models significantly affects accuracy, yet few studies compare their performance on the same time series for throughput modeling. This study implements, evaluates, and compares the performance of eight multivariate forecasting models for port throughput within a proposed multiple-input single-output (MISO) system, chosen for their frequent use in container throughput research. It investigates two data preprocessing approaches: Random Forest Variable Importance Method (RF-VIM) and a Multi Lagged Value approach. The comparison uses six error metrics: normalized root mean squared error, mean absolute error, mean absolute percentage error, mean error, and root mean percentage error. Performances are discussed, and recommendations for adopting a suitable model are provided.
In this study, we examined the assembly and components of a 40-feet container chassis based on its 3D shape. Utilizing the finite element method, we conducted structural analysis considering the total weight, including the 40-ton weight specified in automotive regulations, along with a safety margin of 1.5 under extreme load conditions. And also fixed and junction conditions were applied to the chassis system. Subsequently, we presented the maximum stress results derived from the structural analysis of both the overall chassis system and its individual components. Finally, we evaluated the structural stability of the 40-feet container chassis by comparing and reviewing the maximum stress with the yield strength of the material used for each component.
Protaetia brevitarsis larvae have been widely used for traditional medicine and food in East Asia. This research comprised two experiments. The first experiment compared the growth in densities (10, 20, 30 larvae), substrates (commercial, self-made), and containers (Tyvek, zipper bags). In the second experiment, different numbers of air holes (16, 32, 48 holes) in zipper bags experiment is ongoing. The results indicated that the larvae development rate was 72.6%, 69.98%, and 55.33% in 10, 20, and 30 larvae densities, respectively. However, there was no significant difference in larvae survival rate and weight. In the different feed material experiments, the average larvae weight of commercial feed was 1.09g and for self-made, it was 2.85g. The survival rate was 86% and 96% in commercial and self-made feed, respectively. Lastly, while 96% of larvae survived in Tyvek bags, none of the larvae survived in the zipper bags.
본 논문에서는 컨테이너선의 선형 최적 설계 자동화와 관련하여 연구한 내용과 결과를 정리하였다. 컨테이너선은 일반적으로 프루우드 수 0.26 근처에서 운항하는 선박으로 이 속도에서 운항하는 선박 전용 선형 최적 설계 자동화를 구현하기 위하여 최적화 알고리 즘, 선형 변경 알고리즘, 선박 성능 예측 알고리즘, 자동화 알고리즘 그리고 반복적 계산 기법을 적용하여 컨테이너선의 선형 최적 설계 자동화가 가능한 수치해석 컴퓨터 프로그램을 개발하였으며, HOTCONTAINER라고 명명하였다. 본 연구에서는 선형 최적 설계를 위한 설 계 변수의 적절한 선정을 위하여 민감도 분석 알고리즘을 개발하여 적용하였다. 개발된 선형 최적 설계 자동화 알고리즘의 신뢰성과 실 선 적용성을 파악하기 위하여 세계적으로 다양한 연구가 진행된 컨테이너 선박인 KCS 선박을 대상 선박으로 하여 선형 최적 설계 자동 화 수치해석을 수행하여 그 결과물로써 최적 선박을 도출하고, 대상 선박과 최적 선박의 조파저항과 파계 그리고 파고를 비교하였다. 결 론적으로 최적 선박이 대상 선박과 비교하여 조파저항이 47.63% 감소한 것을 볼 수 있었으며, 배수량과 접수 표면적은 각각 0.50%, 0.39% 감소한 것을 볼 수 있었다.
본 연구의 목적은 컨테이너 육묘 시스템을 활용한 참외 접목 묘의 안정적인 생산 가능성을 평가하는 것이었다. 이를 위해, 컨테이너 육묘 시스템과 고온 조건의 플라스틱 온실에서 육묘 한 접수와 대목, 접목묘의 생육을 비교 분석하였다. 접목활착 후 육묘 환경에 따른 참외 접목묘의 생육과 묘소질을 0일, 4일, 7일, 11일, 14일째에 비교하였다. 컨테이너 육묘 시스템에서 는 주야간 온도를 25/20°C, 상대습도를 70%로 설정하여 재 배기간 동안 안정적으로 유지하였으며, 플라스틱 온실 내의 주야간 평균온도는 28.1/15.4°C로 주야간 온도차(DIF)가 더 크게 나타났다. 조사기간 동안 참외 접목묘의 초장은 플라스 틱 온실 육묘 처리구에서 컨테이너 육묘 시스템 처리구보다 더 길게 나타났다. 참외 접목묘 조직의 충실도는 지상부 건물 중을 초장으로 나누어 계산하였다. 육묘장에서 접목한 묘는 접목 후 7-10일 경과하여 활착이 완료되고 초장이 10cm 내 외일 때 출하하여 정식에 이용되게 된다. 본 연구에서 접목활 착 후 7일째에 컨테이너 육묘 시스템에서 재배된 묘의 충실도 는 44.9±2.64mg/cm으로 나타났으며, 플라스틱 온실 육묘 처 리구에서는 24.4±1.56mg/cm로 나타났다. SPAD 평균은 플 라스틱 온실 육묘에서 30.5, 컨테이너 육묘 시스템에서 41.1 로 측정되었다. 이러한 결과는 컨테이너 육묘 시스템의 활용 이 고온기 또는 저일조 시기와 같은 육묘 환경에서도 고품질 모종을 안정적으로 생산할 수 있는 것을 확인하였고, 인공광 을 이용한 육묘 시스템의 활용 범위가 앞으로 더 확대될 것으 로 기대된다.
Truck no-show behavior has posed significant disruptions to the planning and execution of port operations. By delving into the key factors that contribute to truck appointment no-shows and proactively predicting such behavior, it becomes possible to make preemptive adjustments to port operation plans, thereby enhancing overall operational efficiency. Considering the data imbalance and the impact of accuracy for each decision tree on the performance of the random forest model, a model based on the Borderline Synthetic Minority Over-Sampling Technique and Weighted Random Forest (BSMOTE-WRF) is proposed to predict truck appointment no-shows and explore the relationship between truck appointment no-shows and factors such as weather conditions, appointment time slot, the number of truck appointments, and traffic conditions. In order to illustrate the effectiveness of the proposed model, the experiments were conducted with the available dataset from the Tianjin Port Second Container Terminal. It is demonstrated that the prediction accuracy of BSMOTE-WRF model is improved by 4%-5% compared with logistic regression, random forest, and support vector machines. Importance ranking of factors affecting truck no-show indicate that (1) The number of truck appointments during specific time slots have the highest impact on truck no-show behavior, and the congestion coefficient has the secondhighest impact on truck no-show behavior and its influence is also significant; (2) Compared to the number of truck appointments and congestion coefficient, the impact of severe weather on truck no-show behavior is relatively low, but it still has some influence; (3) Although the impact of appointment time slots is lower than other influencing factors, the influence of specific time slots on truck no-show behavior should not be overlooked. The BSMOTE-WRF model effectively analyzes the influencing factors and predicts truck no-show behavior in appointment-based systems.
Port operational efficiency is considered as one of the most important competitive factors and plays a critical role in the port development all over the world, especially container ports. Haiphong Port, which is in the northern of Vietnam, is planned to become one of the national and regional ports. To do this objective, it is important to analyse the operational efficiency of its container terminals. The paper aims to comparatively analyse the operational efficiency of 16 container terminals in Haiphong Port from 2016 to 2022 by basic and Malmquist DEA models. With 112 observations collected and calculated in R software, DEA models have five inputs (container yard area, number of quay crane, berth draft, berth length, labour force) and one output (annual cargo throughput). Consequently, Hai An, Tan Vu, and Vip Greenport are more efficient terminals over the 7-year period, whereas Transvina and MIPEC have lower efficiency. Paper contributions are the literature review about port operational efficiency and references to propose resolutions in next author’s research as well as masterplans to develop Vietnam seaport’s system. Besides, the limitations are discussed as the number of observations and environmental factors in ports.
To safely dispose of highly radioactive spent resin and concentrate waste generated through nuclear power plant operations, it is essential to meet the physicochemical properties requirements of the packages and ensure the accuracy and reliability of radiological characteristics determination. Both spent resin and concentrate are packaged in high-integrity containers (HICs) after drying and are homogeneous waste products generated in the primary system and liquid radioactive waste treatment system. Meeting the physicochemical properties requirements does not appear to be difficult. However, to achieve reliable radiological characterization of high-integrity container packages, it is necessary to take a representative sample and perform accurate radiological analysis. Therefore, this paper discusses the methodology for evaluating the radionuclide inventory of high radioactive resin and concentrate packages, as well as the essential element technology and considerations. For relatively high radioactive resin and concentrate packages, the radionuclide inventory for each package should be evaluated with high reliability through direct radiological analysis of the representative samples collected for each package. This can contribute to the efficient operation of radioactive waste disposal facilities. Radionuclide-specific concentrations directly analyzed for each package will be managed in a database. As analytical data accumulates and direct measurements of high-integrity container package such as the radwaste drum assay system (RAS) become feasible, statistical techniques such as correlation analysis between easy-tomeasure (ETM) nuclides and difficult-to-measure (DTM) nuclides can lead to the development of efficient and reasonable indirect evaluation methods, such as scaling factor and the mean activity concentration method. As for the element technology, a remote representative sampling technique should be developed to safely and effectively take representative samples of highly radioactive materials, including granulated or hardened concentrate waste. Considerations should also be given to determining the sample quantity representing each package, as well as establishing radiation calibration and measurement methods appropriate to the radiation levels of the representative samples.
At domestic nuclear power plant, concrete containers are stored to store waste generated before waste acceptance criteria (WAC) was established. Concrete container store concentrated waste liquid and waste resin. In order to disposal radioactive waste to a disposal site, it is necessary to conduct a characteristic evaluation inside the waste to check whether it satisfies the WAC. Two types of concrete containers are stored: round and square. The round type is filled with one 200-liter drum, and the square type is filled with four 200-liter drums. In the case of a round shape, the top lid is fastened with bolts, so it is possible to collect samples after opening the top lid without the need for additional equipment. However, in the case of a square shape, there is no top lid, and concrete is poured to cure the lid, so the separate equipment for characteristic evaluation is required. It is necessary to install a workstation for sample collection on the top of the concrete container, equipment for coring the top of the concrete container, and a device to prevent concrete dust scattering. Currently, the design of equipment for evaluating the characteristics of concrete containers has been completed, and equipment optimization through mock-up test will be performed in the future.