검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 68

        21.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to implement the smart home environment, we need an intelligence service platform that learns the user’s life style and behavioral patterns, and recommends appropriate services to the user. The intelligence service platform should embed a couple of effective and efficient data mining algorithms for learning from the data that is gathered from the smart home environment. In this study, we evaluate the suitability of data mining algorithms for smart home intelligent service platforms. In order to do this, we first develop an intelligent service scenario for smart home environment, which is utilized to derive functional and technical requirements for data mining algorithms that is equipped in the smart home intelligent service platform. We then evaluate the suitability of several data mining algorithms by employing the analytic hierarchy process technique. Applying the analytical hierarchy process technique, we first score the importance of functional and technical requirements through a hierarchical structure of pairwise comparisons made by experts, and then assess the suitability of data mining algorithms for each functional and technical requirements. There are several studies for smart home service and platforms, but most of the study have focused on a certain smart home service or a certain service platform implementation. In this study, we focus on the general requirements and suitability of data mining algorithms themselves that are equipped in smart home intelligent service platform. As a result, we provide a general guideline to choose appropriate data mining techniques when building a smart home intelligent service platform.
        4,000원
        22.
        2017.04 구독 인증기관 무료, 개인회원 유료
        As big data is diffused throughout the industry, big data analytics is regarded as a corporate competitiveness, and data mining techniques are pouring in exponential methodologies and techniques in the field of computational science. Using mathematical and statistical techniques that have sufficient academic depth, we aim to increase mining efficiency by increasing efficiency and applying efficient data to mining procedures and processing procedures.
        4,000원
        23.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 모바일과 웹 사용의 증가로 일상생활에서 기록되는 로그데이터를 다양하게 분석하여 의미있는 정보와 지식을 이끌어내고자 하는 연구가 증가하고 있다. 웹과 모바일 기기로부터 생성되는 로그데이터는 시공간적인 정보를 담고 있으며, 데이터를 다차원적으로 탐색하고 시각화하여 기존에 분석하지 못했던 다양한 의미를 찾을 수 있음이 확인되고 있다. 본 연구에서는 시간과 공간 정보를 가지고 있는 로그데이터를 다차원적으로 탐색하고, 의미를 분석하는 데이터마이닝과 시공간 데이터를 시각화하여 의미를 도출하고자 하는 시각화 관련 연구들을 분야별, 연구방법별로 분석하여 연구동향을 살피고 의미를 찾고자 한다.
        4,500원
        24.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        표준은 산업발전 및 무역 자유화의 기반이며 사회 · 경제적인 효율을 향상시키는 중요한 수단이다. 표준과 관련된 정책은 국가적인 차원에서 중요한 이슈 중 하나가 되고 있으며, 이에 따라 산업 분야별 한국산업표준 제정과 활용에 대한 분석은 표준과 관련된 연 구에서 중요한 부분이 되고 있다. 본 연구는 분야별 KS 보유 및 제정현황 분석 그리고 열람실적을 이용하여 표준의 활용도 를 분석한다. 먼저 KS의 보유현황을 국가정책적인 이슈와 함께 살펴보고, 세부적으로 KS 제 정현황이 유사한 분야들은 무엇인지 파악하기 위해 다차원 척도법을 이용하여 시각화 및 군 집화를 실시한다. 이후 각 군집별 제정현황이 유사한 분야들의 표준화 제정활동에 영향을 미 치는 결정요인이 무엇인지 가설설정에 따른 회귀분석을 실시한다. 연구결과 자본집약도, 연구개발 그리고 매출액이 표준화 제정활동에 영향을 미치는 것으로 나타났다. 이에 따라 정부 는 자본집약도가 큰 기업들이 표준화 과정에서 선도적 역할을 유도하고, 연구개발에 따른 표 준과 기술특허 등을 정책적으로 연계시키며, 매출액이 큰 기업들이 표준화 활동을 선도하도 록 지원정책을 수립해야 한다. 두 번째로 표준의 활용도를 분석하기 위해, KS 열람실적 데이 터를 사용하며, 각 KS의 제정연도, 형태 분야별 활용도가 어떻게 다른지 기초통계분석과 의 사결정나무를 사용하여 분석을 수행한다. 그 결과 표준의 제정시기가 활용도에 영향을 크게 미치며, 특정 분야와 형태의 KS들은 최근에 제정되었더라도 활용도가 높은 것으로 나타났 다. 이에 따라 열람실적이 낮은 표준들에 대한 홍보 정책과 함께, 표준을 제정할 때 미열람되 는 표준이 적어지도록 활용도를 고려하는 정책을 수립해야 한다.
        6,900원
        25.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Decision Tree is one of analysis techniques which conducts grouping and prediction into several sub-groups from interested groups. Researcher can easily understand this progress and explain than other techniques. Because Decision Tree is easy technique to see results. This paper uses CART algorithm which is one of data mining technique. It used 273 variables and 70094 data(2010-2011) of working environment survey conducted by Korea Occupational Safety and Health Agency(KOSHA). And then refines this data, uses final 12 variables and 35447 data. To find satisfaction factor in working environment, this page has grouped employee to 3 types (under 30 age, 30 ~ 49age, over 50 age) and analyzed factor. Using CART algorithm, finds the best grouping variables in 155 data. It appeared that ‘comfortable in organization’ and ‘proper reward’ is the best grouping factor.
        4,000원
        26.
        2014.07 구독 인증기관·개인회원 무료
        This study used the methods of decision tree analysis, association rule analysis, and Kano’s model to explore the behavior patterns of mainland China tourists staying at the international tourist hotels in Taiwan. To this end, the data of their demographics, travel variables, overall satisfaction with the lodging experience, different service quality perceptions, and loyalty intentions were included. The decision tree analysis showed that a tourist’s overall satisfaction with the lodging experience, satisfaction with the quality of core intangible services, and certain demographic characteristics are three important determinants of tourist loyalty towards the hotels. In terms of the effect of demographics, the customers’ monthly income and length of stay at the hotel are two main determinants in this study. In addition, if the customer perceptions of different parts of hotel service quality are taken into account, among the five hotel service quality domains, core intangible services from the receptionist, housekeeping personnel, and food & beverage personnel are found to be important influences on hotel customer loyalty intention. In other words, high quality intangible services are important for luxury hotels to demonstrate their unique ability to help customers experience the service quality that creates loyalty intentions. With regard to the association rule analysis, the results showed that core intangible service aspects from the receptionist, housekeeping personnel, and food & beverage personnel are strongly associated with customer loyalty intentions, as are the tangible aspects of the reception and hotel room facilities. The former indicated that reception in the hotel lobby could be considered one of the most important servicescapes because of its impact in forming many of the first impressions of hotel guests, while the latter is treated as core offerings in hotels that would be encountered by most hotel customers. If the tourists are mainly from package tours, the intangible services and tangible facilities of these areas are the important areas to create customer satisfaction. However, if the tourists are mainly independent tourists because they have more time and free choice to stay at the hotel longer than the package tour tourists, the intangible services and tangible facilities of the entertainment or business centers would be even more important to these tourists than to the package tour tourists. With regard to Kano’s model analysis, the results showed that, based on mainland China tourists’ perceptions, most of the service elements fit into the category of one-dimensional quality attributes. This means that these service elements are positively and linearly related to customer satisfaction, and the greater fulfillment of the attribute results in a greater degree of satisfaction. This also means that hotels should make more effort to innovate their intangible services and tangible facilities to create business advantages in the market.
        28.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study suggests new approach to identify core technologies through patent analysis. Specially, the approach applied data mining technique and multi-criteria decision making method to the co-classification information of registered patents. First, technological interrelationship matrices of intensity, relatedness, and cross-impact perspectives are constructed with support, lift and confidence values calculated by conducting an association rule mining on the co-classification information of patent data. Second, the analytic network process is applied to the constructed technological interrelationship matrices in order to produce the importance values of technologies from each perspective. Finally, data envelopment analysis is employed to the derived importance values in order to identify priorities of technologies, putting three perspectives together. It is expected that suggested approach could help technology planners to formulate strategy and policy for technological innovation.
        4,000원
        29.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법 론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생 성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측 정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.
        4,000원
        30.
        2013.11 구독 인증기관 무료, 개인회원 유료
        Globally, smart phones have been rapidly distributed, which has led to changes in people's life cycle. Most people who are under 60 are supposed to use smart phones. Additionally, as the ratio of people who are interested in physical exercise is increasing, some applications for smart phones can manage dividual's exercise with the web servers. However, most of them can only check how much individual works out and cannot compare other's body type and life environment. Moreover, users cannot share their own data with others. This paper proposed the system which can resolve those kinds of problems through data mining techniques. The suggested model will have ability to figure out the relation between body type and the amount of exercise, find out if his work is proper from the result of classification and can pick out the features which is common to people who have similar body type and the amount of workout by applying data mining techiques. This model also will be able to recommend the proper amount of workout to each individual in order that they keep good health state efficiently.
        4,000원
        31.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Data mining is the process of finding and analyzing data from a big database and summarizing it into useful information for a decision-making. A variety of data mining techniques have been being used for wide range of industries. One application of those is especially so for gathering meaningful information from process data in manufacturing factories for quality improvement. The purpose of this paper is to provide a methodology to improve manufacturing quality of fuel tanks which are auto-parts. The methodology is to analyse influential attributes and establish a model for optimal manufacturing condition of fuel tanks to improve the quality using decision tree, association rule, and feature selection.
        4,000원
        32.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대작게임의 범용화에 따라, 게임마케팅 및 게임평가에 대한 사용자 피드백들이 체계화된 데이터베이스에 저장이되고, 더불어 데이터베이스의 규모는 점점 커지고 있다. 데이터 마이닝은 방대한 자료의 분석을 통해, 그 속에 숨어있는 의미를 찾는 과정이다. 본 논문에서는 게임마케팅 활용시나리오에 따른 사용자지향 데이터 마이닝 도구인 XM-Tool/Miner의 개발을 대상으로 하고 있다. 개발된 XM-Tool/Miner은 문제 중심적 마이닝 도구를 목표로 하였으며, 대표적인 마이닝 알고리즘을 적용하였고, 또한 사용의 편이성에 초점을 맞추었다. 더 나아가 데이터 마이닝 기법뿐만 아니라 데이터의 샘플링과 성능향상을 통하여 방대한 데이터로부터 다양한 지식탐사가 가능해지고, 발견된 규칙 또는 지식의 유용성 측정을 통하여 대상마케팅 특성에 따라 효과적으로 반영되며 의사결정 및 CRM마케팅, 동향분석 및 예측 등에 유용한 정보를 추출하는 도구로 사용할 수 있다.
        4,000원
        33.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 국내 진단 결과의 부정확성 때문에 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 원시 심전도 데이터로부터 심장 질환 진단의 파라미터인 ST-segment 추출 방법을 제안한다. ST-segment는 관상동맥 질환 예측에 활용되므로 데이터마이닝의 분류기법을 적용하여 질환을 예측한다. 또한 연관규칙 마이닝을 통해 환자들의 임상 데이터로부터 심장 질환자들의 임상적 특징을 예측한다.
        4,000원
        34.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The authors used association rules and patterns in sequential of data mining in order to raise the efficiency of engineering changes. The association rule can reduce the number of engineering changes since it can estimate the parts to be changed. The patterns in sequential can perform engineering changes effectively by estimating the parts to be changed from sequence estimation. According to this result, unnecessary engineering changes are eliminated and the number of engineering changes decrease. This method can be used for improving design quality and productivity in company managing engineering changes and related information.
        4,000원
        35.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
          According to the automated manufacturing processes followed by the development of computer manufacturing technologies, products or quality characteristics produced on the processes have measured and recorded automatically. Much amount of data daily prod
        4,000원
        37.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays most colleges are confronting with a serious problem because many students have left their majors at the colleges. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, the objective of this paper Is to find a predicting model of students leaving their majors. The sample for this study was chosen from a university in Kangwon-Do during seven years(2000.3.1 ~ 2006. 6.30). In this study, the ratio of training sample versus testing sample among partition data was controlled as 50% : 50% for a validation test of data division. Also, this study provides values about accuracy, sensitivity, specificity about three kinds of algorithms including CHAID, CART and C4.5. In addition, ROC chart and gains chart were used for classification of students leaving their majors. The analysis results were very informative since those enable us to know the most important factors such as semester taking a course, grade on cultural subjects, scholarship, grade on majors, and total completion of courses which can affect students leaving their majors.
        4,000원
        38.
        2006.05 구독 인증기관 무료, 개인회원 유료
        The main objective of this study is to provide feature analysis of industrial accidents in manufacturing industries using CART algorithm, a data mining technique. In this study, data on 10,536 accidents were analyzed to create risk groups, including the risk of disease and accident. Also, this paper used the gains chart produced by the decision tree. According to the result, gains chart can be used for a risk analysis for industrial accidents management. The sample for this work chosen from data related to manufacturing industries during three years (2002~2004) in Korea. The resulting classification rules have been incorporated into development of a developed database tool to help quantify associated risks and act as an early warning system to individual industrial accident in manufacturing industries.
        4,000원
        39.
        2006.05 구독 인증기관 무료, 개인회원 유료
        The data mining technique is an effective instrument for making large datasets accessible and different industrial accident data comparable. Many research studies have been focused on the analysis of industrial accidents in order to reduce them. However most researches used a typical technique for the analysis of data related to industrial accidents. The main objective of this study is to compare algorithms comparison for data analysis of industrial accidents and this paper provides a comparative analysis of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network). This study uses selected nine independent variables to group injured people according to a dependent variable in a way that reduces variation. In this study, data on 10,536 accidents were analyzed to create risk groups for a number of complications, including the risk of disease and accident. The sample for this work chosen from data related to manufacturing industries during three years (2002 ~ 2004) in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.
        4,000원
        40.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a data-mining aided heuristic algorithm development. The developed algorithm includes three steps. The steps are a uniform selection, development of feature functions and clustering, and a decision tree making. The developed algorithm
        4,000원
        1 2 3 4