In Korea, as part of the Green New Deal project toward a carbon-neutral society, it is necessary to build a climate-resilient urban environment to green the city, space, and living infrastructure. To this end, SWMM-ING was improved and the model was modified to analyze the carbon reduction effect. In addition, I plan to select target watersheds where urbanization is rapidly progressing and evaluate runoff, non-point pollution, and carbon reduction effects to conduct cost estimation and optimal design review for domestic rainwater circulation green infrastructure. In this study, green infrastructure facilities were selected using SWMM-ING. Various scenarios were presented considering the surface area and annual cost of each green infrastructure facility, and The results show that the scenario derived through the APL2 method was selected as the optimal scenario. In this optimal scenario, a total facility area of 190,517.5 m2 was applied to 7 out of 30 subwatersheds to achieve the target reduction. The target reduction amount was calculated a 23.50 % reduction in runoff and a 26.99 % reduction in pollutant load. Additionally, the annual carbon absorption was analyzed and found to be 385,521 kg/year. I aim to achieve additional carbon reduction effects by achieving the goal of reducing runoff and non-point pollution sources and analyzing annual carbon absorption. Moreover, considering the scale-up of these interventions across the basin, it is believed that an objective assessment of economic viability can be conducted.
PURPOSES : This study is to analyze the reduction effect on road pavement damage from the installation of weigh-in-motion systems used for overloaded vehicle enforcement, from the perspective of traffic assignment. METHODS : Fixed-demand multi-class traffic assignment was conducted by VISUM, a macroscopic traffic simulation software. We considered three vehicle classes and calculated the traffic load for each road link using the ESAL(Equivalent Single Wheel Load) factor, as proposed by ASHTTO(American Association of State Highway and Transportation Officials). We set up scenarios with weigh-in-motion installations in certain sections and observed how the traffic load changed before and after the installation of weigh-in-motion for each scenario. RESULTS : Three main trends were observed. Firstly, at points where weigh-in-motion systems were installed, traffic load significantly decreased even with the influx of cars and trucks following the restriction of overloaded trucks, highlighting the significant influence of overweight vehicles on the traffic load. Secondly, even when overweight vehicles detoured, there was no significant change in the overall network's traffic load. Lastly, the detour of overweight vehicles led to an increase in the total driving distance and time for all vehicles. CONCLUSIONS : Installing weigh-in-motion systems in sections with a lower structure number, which indicates thinner road pavement, can prevent damage in those specific areas without affecting the entire road network.
The purpose of this study is to identify psychological anxiety factors related to firefighters' field activities and suggest improvement measures. To investigate the actual status of psychological anxiety factors, a survey was conducted on approximately 3,500 current firefighters, and the responses of 505 people who participated in the survey were analyzed. As a research method, frequency analysis and cross-analysis were conducted according to the general characteristics of the participants to determine the actual level of psychological anxiety in each work field and the results were analyzed. As a result of the analysis, it was statistically confirmed that firefighters feel a lot of psychological burden due to legal and institutional inadequacies during dispatch, return, or field activities, and frequent friction with civil servants is also a major cause of psychological anxiety. Therefore, based on the results of this study, it is proposed to establish a permanent legal support team in each city and province, designate and operate a hospital dedicated to psychological treatment, and establish a special provision for traffic accidents during the return of fire trucks so that firefighters can concentrate on their duties without psychological anxiety. do.
This study aimed to identify the actual catch situation of offshore dredge gear which is newly regulated in the legislation. It’s also conducted to identify the species composition, weight of the catch including the target species and incidental catches, and to provide the basic information necessary for the resource management of aquatic organisms caught by offshore dredge. During the investigation period (from September 2022 to May 2023), a total of 61 species appeared in the test operation sea of Boryeong, Chungcheongnam-do and Gunsan, Jeollabuk-do, with 31 species of fishes, 11 species of malacostraca, six species of gastropoda, five species of bivalvia, three species of cephalopoda, three species of asteroidea, one species each of asteroidea and holothuroidea appeared. According to the results of the test operation conducted in September and November 2022, the non-catch season of Atrina (Servatrina) pectinata, 1,203 shellfishes were caught out of 2,979 caught in number, showing a bycatch rate of 59.6%, and by weight, 157.9 kg of shellfish was caught out of the total catch of 448.4 kg, showing a bycatch rate of 64.8%. On the other hand, in February and May 2023, the catch season for Atrina (Servatrina) pectinata, 3,692 fishsells were caught out of the 4,232 catches in total, showing a bycatch rate of 12.8%, and by weight, 1,185.0 kg of shellfish was caught out of the total catch of 1,293.2 kg, showing an 8.3% bycatch rate.
The United States enforces the seafood import regulations so-called the Marine Mammal Protection Act (MMPA), and by 2023, all exports of aquatic products and processed fish products by fisheries which have not obtained an “Comparability Finding” from the National Oceanic and Atmospheric Administration will be completely banned. Therefore, to respond to the US MMPA, it is critical to identify technologies and methods used in worldwide for reducing bycatch of marine mammals. In particular, marine mammals are frequently caught in five fisheries (trawl, gill net, trap, stow net and set net) in Korea, which is facing a great challenge. This study presented bycatch reduction methods by five fisheries, classified the methods by country, and suggested appropriate reduction methods which can be applied in Korea.
본 연구는 유럽연합(EU)의 환경문제와 섬유패션산업 현황을 바탕으로 스페인의 탄소배출 절감 노력과 인디텍스 그룹의 전략을 분석하였다. 특 히 인디텍스 그룹의 사례를 통해 섬유패션산업의 탄소배출 절감 전략의 효과성을 검토하며, 섬유패션산업이 어떻게 지속 가능한 방향으로 전환 될 수 있는지의 시사점을 제시하고자 한다. 특히 석유산업에 이어 두 번 째로 큰 환경 파괴원인으로 지목되는 패스트 패션의 탄소배출 문제를 조 명한다. 연간 전 세계에서 섬유패션산업은 탄소 배출량의 약 10%를 차 지하며, 이 수치는 모든 국제선 및 해상 운송의 배출량을 합친 것보다도 더 크다. 특히 패스트 패션의 생산과 유통 과정에서 발생하는 탄소배출 은 그 크기가 막대하여 지속가능성에 큰 위협을 미치고 있다. 즉, 패스트 패션의 탄소배출 문제를 해결하기 위한 전략적 접근 방식을 제시하며, 섬유패션산업의 지속가능성 향상을 위한 핵심 요소를 도출하고자 한다.
Decommissioning waste is generated with various types and large quantities within a short period. Concrete, a significant building material for nuclear facilities, is one of the largest decommissioning wastes, which is mixed with aggregate, sand, and cement with water by the relevant mixing ratio. Recently, the proposed treatment method for volume reduction of radioactive concrete waste was proven up to scale-up testing using unit equipment, which involved sequentially thermomechanical and chemical treatment. According to studies, the aggregate as non-radioactive material is separated from cement components with contaminated radionuclides as less than clearance criteria, so the volume of radioactive concrete waste is decreased effectively. However, some supplementation points were presented to commercialize the process. Hence, the process requires efficiency as possible to minimize the interface parts, either by integration or rearranging the equipment. In this study, feasibility testing was performed using integrated heating and grinding equipment, to supplement the possible issue of generated powder and dust during the process. Previously, heat treatment and grinding devices were configured separately for pilot-scale testing. But some problems such as leakage and pipe blockage occurred during the transportation of generated fine powder, which caused difficulties in maintaining the equipment. For that reason, we studied to reduce the interface between the equipment by integrating and rearranging the equipment. To evaluate the thermal grinding performance, the fraction of coarse and concrete fines based on 1mm particle size was measured, and the amount of residual cement in each part was analyzed by wet analysis using 4M hydrochloric acid. The result was compared with previous studies and the thermomechanical equipment could be selected to enhance the process. Therefore, it is expected that the equipment for commercialization could be optimized and composed the process compactly by this study.
Currently, the most promising fuel candidate for use in sodium fast reactors (SFRs) is metallic fuel, which is produced by a modified casting method in which the metallic fuel material is sequentially melted in an inert atmosphere to prevent volatilization, followed by melting in a graphite crucible, and then injection casting in a quartz (SiO2) mold to produce metallic fuel slugs. In previous studies, U-Zr metallic fuel slugs have been cast using Y2O3 reaction prevent coatings. However, U-Zr alloy-based metallic fuel slugs containing highly reactive rare earth (RE) elements are highly reactive with Y2O3-coated quartz (SiO2) molds and form a significant thickness of surface reaction layer on the surface of the metallic fuel slug. Cast parts that have reacted with nuclear fuel materials become radioactive waste. To decrease amount of radioactive waste, advanced reaction prevent material was developed. Each RE (Nd, Ce, Ln, Pr) element was placed on the reaction prevent material and thermal cycling experiments were carried out. In casting experiments with U-10wt% Zr, it was reported that Y2O3 layer has a high reaction prevent performance. Therefore, the reaction layer properties for RE elements with higher reactivity than uranium elements were evaluated. To investigate the reaction layer between RE and NdYO3, the reaction composition and phase properties as a function of RE content and location were investigated using SEM, EDS, and XRD. The results showed that NdYO3 ceramics had better antireaction performance than Y2O3.
South It is necessary to develop the future technologies to improve the sustainability and acceptability of nuclear power plants generation. Currently, our company is preparing to build the dry storage facility on-site in accordance with the basic plan for managing high-level radioactive waste announced by the government in 2021. However, studies on technologies for the volume reduction of spent nuclear fuel to increase the efficiency of on-site spent fuel dry storage facilities are very not enough. Accordingly, in this study, the storage efficiency and appropriateness for the SF volume reduction processing technologies such as SF oxide processing technology and consolidation technology are evaluated. Finally, the goal is to develop the optimized technologies to improve the storage efficiency of spent nuclear fuel. As a result in this study is followings. [Safety] After removing volatile fission products (Xe, Kr, I, etc.), Xe, Kr, etc. are removed during storage of the sintered structures. UO2 has a high melting point of approximately 1,000°C after cesium (Cs) has been removed, and heat can be removed by natural convection. [Economy]1999 DUPIC unit facility unit price reference, 2020 standard 328 $/kg estimated. A Comprehensive Approach Considering the Whole System is needed. Benefit from replacement and continuous operation of metal storage containers. Changes in economic efficiency obtained in conjunction with fluctuations in electricity prices and disposal. [Waste filter] A separated solidification facility high-level waste filter is required, and overseas outsourcing must be considered. [Waste cladding]. Cannot be accommodated in low-level disposal site. This reason is why the Ni nuclides occur to be in bulk. [Metal structural material] It is possible to reduce the initial volume by 7.6% or more when compressed or melted, but the technology needs to be advanced. [Oxide blocks] Larger size and density are expected to improve storage and disposal efficiency. [Facilities operation waste] Expected to be able to be disposed of at mid-to-low level decommissioning sites in Gyeongju city. [Solidified volatile nuclides and activated metals] Expected to improve storage efficiency when used volume is reduced and stored, such as outsourced reprocessing. [Oxide block] Radioactivity and decay heat are estimated to be reduced by half during oxide treatment. 75% reduction in volume and 40% reduction in storage area compared to used nuclear fuel before treatment. [Merits/Shortages] Improvement of storage and disposal efficiency empirical research such as large-capacity [real-scale] oxide block production is required. Oxide processing facilities are likely to be classified as post-use nuclear fuel processing facilities. It is determined that additional documents such as a Radiation Environmental Report (RER) must be submitted. Existence of possible external leaks of glass, highly mobile radionuclides from the point of view of nuclear criticality and heat removal. Acceptancy requirements of citizens in the process of creating additional sites for oxide treatment facilities. Considering social public opinion, it is necessary to secure the acceptability such as residents’ opinions convergence. Characteristics of high nuclear non-propagation compared to other processing technologies involving chemical processing. Also, Expectation of volume reduction effect for spent nuclear fuel itself. Volume reduction methods for solid waste and gaseous waste are required.
In pyroprocessing, the residual salts (LiCl containing Li and Li2O) in the metallic fuel produced by the oxide reduction (OR) process are removed by salt distillation and fed into electrorefining. This study undertook an investigation into the potential viability of employing a separate LiCl salt rinsing process as an innovative alternative to conventional salt distillation techniques. The primary objective of this novel approach was to mitigate the presence of Li and Li2O within the residual OR salt of metallic fuel, subsequently facilitating its suitability for electrorefining processes. The process of rinsing the metallic fuel involved immersing it in a LiCl salt environment at a temperature of 650°C. During this immersion process, the residual OR salt contained within the fuel underwent dissolution, thereby reducing the concentrations of Li2O and Li generated during the OR process. Furthermore, the Li and Li2O dissolved within the LiCl salt were effectively consumed through chemical reactions with ZrO2 particles present within the salt. Importantly, even after the metallic fuel had been subjected to rinsing in a conventional LiCl salt solution, the concentration of Li and Li2O within the salt remained consistent with its initial levels, due to the utilization of ZrO2. Moreover, it was observed that the Li- Li2O content within the metallic fuel was significantly diluted as a result of the rinsing process.
Raman distributed temperature sensor can be used as temperature instruments as well as monitoring abnormalities in next-generation nuclear systems. Since noise reduction and Measuring Frequency enhancement are required, integration time adjustment has been mainly used so far. In this study, a new data processing method using Moving Average Filter was analyzed to see if noise reduction and Measuring Frequency could be reduced, and improvement measures were suggested.
Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study is also to develop an exhaust flow control unit suitable for an exhaust engine to completely burn smoke generated by an engine using a diesel engine in a low temperature exhaust gas. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.