검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 129

        41.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe doped TiO2 nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and TiO2 sol. Fe doped TiO2 particles were reacted in the temperature range of 170 to 200˚C for 6 h. The microstructure and phase of the synthesized Fe doped TiO2 nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped TiO2 nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped TiO2 nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped TiO2 nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped TiO2 nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped TiO2 nanoparticles was about 16% up to ~700˚C; water of crystallization was dehydrated at 271˚C. The transition of Fe doped TiO2 nanoparticle phase from anatase to rutile occurred at almost 561˚C. The amount of rutile phase of the synthesized Fe doped TiO2 nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.
        3,000원
        42.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pure zirconia and x mol% calcia partially stabilized zirconia (x = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and x mol% calcia doped zirconia was prepared by adding NH4OH to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized ZrO2 and x mol% CaO-ZrO2 (x = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as 160˚C, pure ZrO2 and x mol% CaO-ZrO2 (x = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above 160˚C. To observe the phase transition, the 3 mol% CaO-ZrO2 and 8 mol% CaO-ZrO2 nanopowders were heat treated from 600 to 1000˚C for 2h. The 3 mol% CaO-ZrO2 heat treated at above 1000˚C was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-ZrO2 nanopowders via the hydrothermal method.
        4,000원
        43.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied andapplied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that theyprovide. ZnO seed layer (about 40nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at 95oC for 5 hr by hydrothermal methodwith concentrations of Zn(NO3)2·6H2O [ZNH] and (CH2)6N4 [HMT] precursors ranging from 0.02M to 0.1M. We observed themicrostructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape tothe c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality.Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highestpeak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak ofNBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality andhomogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and theformation of Zn vacancies in the nanorods due to the lack of Zn++ in the 0.02 M precursor.
        4,000원
        44.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 올레산을 표면개질제로 사용하여 수열법을 통해 수산화 마그네슘을 합성하였다. 수산화 마그네슘은 알카리 조건에서 올레인산과의 반응을 통해 표면 개질된 마이크로 크기의 플레이크 형상을 갖는다. 수열합성에서 수산화 마그네슘 입자 생성의 조건은 pH, 온도 그리고 반응시간이 표면개질과 입자 형상의 주요 변수임을 확인하였다. 생성된 수산화 마그네슘 입자는 FE-SEM, XRD, FT-IR 그리고 TGA를 통해 확인하였다. 유기 용매 내에서의 분산성의 확인은 개질되지 않은 수산화 마그네슘과의 침전 테스트 비교를 통해 확인하였다.
        4,000원
        45.
        2011.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the<001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of Zn2+ and OH-1 and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were 1.97μm and 0.07μm, respectively, and the aspect ratio was 28.1 with the preferred orientation along the<001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.
        4,000원
        46.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.
        4,000원
        47.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pearlesent pigment has received attention in a diversity of fields like cosmetics, inks, paints and so on. Ferric Ferrocyanide, one of the nano sized pearlescent pigment, is a kind of surface modification pigment that covers a metal oxidized substance or a coloring agent with uniform thickness. Characteristics of pearlescent pigment are various interference color, intense gloss effect and a three-dimensional effect. We synthesised the pearlesent pigment that ferric ferrocyanide can be deposited on the titania/mica surface by hydrothermal synthesis method. The process parameters are concentration of precursor, controlling pH and reaction temperature. The optimun conditions is that amount of iron(III) chloride hexahydrate is 3.1 wt% and amount of potassim ferrocynide trihydrate is 3.6 wt% in the started pH 4.5 at 70℃. The coating rate and coating efficiency of ferric ferrocyanide was about 1.47 % and 96.7 %, respectively. The synthesised pearlesent pigment was characterized by SEM, XRD, FT-IR and EDS.
        4,000원
        48.
        2011.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin (IV) dioxide (SnO2) has attracted much attention due to its potential scientific significance and technological applications. SnO2 nanoparticles were prepared under low temperature and pressure conditions via precipitation from a 0.1 M SnCl4·5H2O solution by slowly adding NH4OH while rapidly stirring the solution. SnO2 nanoparticles were obtained from the reaction in the temperature range from 130 to 250˚C during 6 h. The microstructure and phase of the synthesized tin oxide particles were studied using XRD and TEM analyses. The average crystalline sizes of the synthesized SnO2 particles were from 5 to 20 nm and they had a narrow distribution. The average crystalline size of the synthesized particles increased as the reaction temperature increased. The crystalline size of the synthesized tin oxide particles decreased with increases in the pH value. The X-ray analysis showed that the synthesized particles were crystalline, and the SAED patterns also indicate that the synthesized SnO2 nanoparticles were crystalline. Furthermore, the morphology of the synthesized SnO2 nanoparticles was as a function of the reaction temperature. The effects of the synthesis parameters, such as the pH condition and reaction temperature, are also discussed.
        3,000원
        49.
        2011.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at 180˚C for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens (33 mm×8 mm×1±0.5 mm) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.
        4,000원
        50.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO nanorods for gas sensors were prepared by a hydrothermal method. The ZnO gas sensors were fabricated on alumina substrates by a screen printing method. The gas-sensing properties of the ZnO nanorods were investigated for CH4 gas. The effects of growth time on the structural and morphological properties of the ZnO nanorods were investigated by X-ray diffraction and scanning electron microscope. The XRD patterns of the nanocrystallized ZnO nanorods showed a wurtzite structure with the (002) predominant orientation. The diameter and length of the ZnO nanorods increased in proportion to the growth time. The sensitivity of the ZnO sensors to 5 ppm CH4 gas was investigated for various growth times. The ZnO sensors exhibited good sensitivity and rapid response-recovery characteristics to CH4 gas, and both traits were dependent on the growth time. The highest sensitivity of the ZnO sensors to CH4 gas was observed with the growth time of 7 h. The response and recovery times were 13 s and 6 s, respectively.
        3,000원
        51.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        nanowires were synthesized by a hydrothermal reaction of metallic Y with aqueous solution of LiOH. The morphology and the size of the nanowires changed with varying the volume of the LiOH solution inside the autoclave. nanowires transformed to by a subsequent heat-treatment without morphological change. By a proper control of hydrothermal reaction parameter and heat-treatment, the yield of pure nanowires up to 97% was attained.
        4,000원
        52.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, partially stabilized zirconia was synthesized using a chemical Y2O3 stabilizer and hydrothermal method. First, YCl3-6H2O and ZrCl2O-8H2O was dissolved in distilled water. Y-TZP (a Y2O3-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of NH4OH solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove Cl- ions. ZrO2-Xmol%Y2O3 powder was synthesized by a hydrothermal method using Teflon Vessels at 180˚C for 6 h of optimized condition. The powder added with the Xmol%- Y2O3 (X = 0,1,3,5 mol%) stabilizer of the ZrO2 was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of 33mm×8mm×3 mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% Y2O3. The 3Y-ZrO2 agglomerated particle size was measured at 7.01μm. The agglomerated particle was clearly observed in the sample of 5 mol % Y2O3-ZrO2, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% Y2O3-ZrO2. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% Y2O3-ZrO2.
        4,000원
        53.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위폐기물처분장에서 완충재는 오랜 기간 동안 방사성핵종의 붕괴열과 여러가지 화학조건의 지하 수에 노출되며, 이러한 열수조건은 완충재물질의 차수 및 핵종저지 방벽성능에 심각한 영향을 줄 수 있 다. 본 연구에서는 국산 스멕타이트를 대상으로 열수실험을 수행하고, 열수반응에 의한 스멕타이트 점토 의 팽창도, 층전하, 양이온교환능의 변화를 조사하였다. 열수실험 결과, 온도와 용액 중 칼륨농도를 증가 시켰을 때, 스멕타이트의 팽창도는 감소하였고, 층전하는 더 큰 음전하를 가졌으며, 양이온교환능도 감소 하였다.
        4,000원
        54.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at 150˚C and different growth temperatures ranging from 100˚C to 250˚C with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at 100˚C and the ZnO nanostructure grown at 150˚C has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of 150˚C, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.
        4,000원
        55.
        2008.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have synthesized Eu3+-doped YVO4 phosphors by using a hydrothermal method and investigatedtheir luminescent properties. Aqueous solutions of Y2O3, V2O5, Eu2O3, and nitric acid with various pH valueswere used as the precursors. The crystallinity, surface condition, and emission characteristics were examinedusing XRD, FT-IR, and photo-excited spectrometer. Eu3+ incorporation followed by the efficient red emissionstrongly depends on the acidity of solution media. The emission intensity becomes stronger as the pH valuesincrease to 7 and then gradually decreases. This phenomenon might be related to the hydroxyl quenchingeffect, which is induced by surface bound OH- groups.
        3,000원
        56.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        우리는 마이카, boron nitride, bismuthoxychloride와 같은 판상 분체에 ZnO 나노입자를 코팅한 고 기능성 무기 분체를 합성하였다. 본 실험에서 우리는 수열침전법을 이용하여 합성 분체를 합성하였다. 출발물질은 ZnCl2를 사용하였고 침전제로는 hexamethylenetetramine(HMT)와 urea를 사용하였다. 본 실험의 반응변수로는 출발물질의 농도, 침전제 및 반응온도를 변화시켜 실험하였다. 합성물의 형태, 결정성 및 UV-차단능은FE-SEM, XRD, FT-IR, TGA-DTA, in vitro SPF 테스트를 활용해 분석하였다. 본 실험의 결과, 나토입자 크기를 갖는 ZnO는 동일한 최적의 합성조건하에서 다양한 판상 분체의 종류에 관계없이 균일하게 코팅되었다.
        4,000원
        59.
        2007.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        벤토나이트 완충재의 열수거동 실험에서는 고준위폐기물처분장 완충재로 유력하게 고려되고 있는 국산 벤토나이트를 대상으로 열수특성을 규명하고, 또 그 결과를 바탕으로 KRS 처분환경에서 벤토나이트 완충재의 장기건전성을 평가하였다. 실험결과, 벤토나이트 완충재의 열수반응은 주 구성광물인 스멕타이트의 일라이트화를 통해 진행되었으며, 온도, 농도, pH는 이러한 일라이트화에 중요한 열수반응인자 역할을 하였다. KRS 처분환경에 대한 국산벤토나이트 완충재의 장기건전성을 분석한 결과, 정상상태에서는 벤토나이트 완충재가 오랜 기간 동안 방벽재기능을 유지하였지만, 보수적인 조건에서는 약 년이 경과했을 때 벤토나이트 완충재를 구성하는 스멕타이트의 50%이상이 일라이트로 전환되어 방벽재로서의 팽윤능력을 상실할 수 있음을 예상할 수 있었다.
        4,000원
        1 2 3 4 5