To evaluate the protective effect of Ajuga multiflora BUNGE (AMB) extract on the toxicity of lead acetate (LA), environmental pollutant, cell viability was measured by XTT assay using cultured NIH3T3 fibroblasts. And also, the effect of antioxidant, butylated hydroxytoluene (BHT) on LA-induced cytotoxicity was analysed. For the protective effect of AMB extract on LA-induced cytotoxicity, NIH3T3 fibroblasts were pretreated with 80 or 90 μg/mL of AMB extract for 2 hours before the treatment of LA. And also, the antioxidative effects of AMB extract against LA-induced cytotoxicity were assessed by DPPH-radical scavenging activity, superoxide dismutase (SOD)-like activity and inhibitory activity of lipid peroxidation (LP). In this study, LA significantly decreased cell viability dose-dependently compared with control, and then XTT50 value was determined at 46.1 μM of LA. In the effect of BHT against LA-induced cytotoxicity, it effectively prevented toxic effect of LA by the significant increase of cell viability. In the protective effect of AMB extract on LA-induced cytotoxicity, it significantly increased cell viability which was decreased by LA-induced cytotoxicity, and also it showed the antioxidative effects such as DPPH-radical scavenging activity, SOD-like activity and inhibitory activity of LP. From these results, it is suggested that the cytotoxicity of LA is involved in oxidative stress, and AMB extract effectively prevented the cytotoxicity induced by LA via an antioxidative effect. Conclusively, the natural substance such as AMB extract may be alternative resources for the prevention or treatment of diseases related with oxidative stress.
Background: Cisplatin is one of the most extensively used chemotherapeutic agents for the treatment of cancer, including bladder, and ovarian cancers. However, it has been shown to induce nephrotoxicity, despite being an outstanding anti-cancer drug. In this study, we investigated the protective effect of dopaol β-D-glucoside (dopaol) on cisplatin-induced nephrotoxicity. Methods and Results: To confirm the protective effect of dopaol on cisplatin-induced nephrotoxicity, HK-2 cells were treated with 20 μM cisplatin and 80 μM dopaol. Cisplatin increased apoptosis, caspase-3 activity and mitochondrial dysfunction; however pretreatment with 80 μM dopaol successfully attenuated apoptosis, caspase-3 activity and mitochondrial dysfunction. To evaluate the protective effect dopaol on cisplatin-induced nephrotoxicity in vivo, we used an animal model (balb/c mice, 20 ㎎/㎏, i.p. once/day for 3 day). The results were similar to those obtained using HK-2 cells; renal tubular damage and neutrophilia induced by cisplatin reduced following dopaol injection (10 ㎎/㎏, i.p. once/day for 3 day). Conclusions: These results indicate that dopaol treatment reduced cisplatin-induced nephrotoxicity in vitro and in vivo, and can be used to treat cisplatin-induced nephrotoxicity. However, further studies are required to determine the toxicity high dose dopaol and the signal pathways involved in its mechanism of action in animal models.
This study aimed to investigate the various biological activities of Geranium thunbergii such as antimicrobial activity and protective effect against oxidative damage. To evaluate its antioxidant and antimicrobial activities, we first performed methanol extraction; this methanol extract was further partitioned using various solvents. And then, its antioxidant activity was measured using various assays including total phenolic content and protection against oxidative DNA damage, and antimicrobial activities were examined using minimum inhibiting concentration (MIC) test, and paper disc method. In addition, high-performance liquid chromatography was performed to analyze the major chemical components of ethyl acetate fraction. The G. thunbergii fraction with ethyl acetate exhibited higher antioxidant and antimicrobial activities than the other fractions. The results showed that G. thunbergii ethyl acetate fraction at 50 μg/mL had strong DPPH and ABTS radical scavenging activities of 80.88% and 80.12%, respectively. In addition, the ethyl acetate fraction protected DNA from the oxidative damage induced by ferrous ion and hydroxyl radicals and showed high antimicrobial activity with diameter of inhibition zones ranging from 13.33 to 15.67 mm. High-performance liquid chromatography analysis revealed the major phenolic compounds of G. thunbergii to be ellagic acid and gallic acid. These results suggest that G. thunbergii might protect DNA against oxidative stress induced by reactive oxygen species and can be utilized as a natural source of antioxidant and antimicrobial agent in the food industry.
Background : Alzheimer`s disease (AD) is characterized by neuronal loss and extracellular senile plaque, whose major constituent is β-amyloid (Aβ), a 39-43 amino acid peptide derived from amyloid precursor protein. In cultures, Aβ directly induce neuronal cell death and can include excessive generation of free radicals and peroxidative injury to proteins, lipids, and other macromolecules. Actinidia arguta, generally called hardy kiwifruit, has been reported to possess anti-inflammatory, anti-allergic and antioxidative properties. The present study aims to investigate the neuroprotective effect of the leaves and stems of A. arguta using in vitro cultured neurons and in vivo experimental animals. Methods and Results : Primary cortical neuronal cultures were prepared using Sprague-Dawley (SD) rat fetuses on embryonic days 15. Neurotoxicity experiments were performed on neurons after 3-4 days in culture. Cultured neurons were treated with 10 μM Aβ (25-35) for 24 h to produce neurotoxicity. In addition, cultured neurons were treated with H2O2 (100 μM) for 15 min and then incubated for 12 h in H2O2-free medium. Viability of cultured neurons was measured by a colorimetric MTT assay. Hoechst 33342 staining of neurons was carried out to examine Aβ (25-35)-induced apoptotic neuronal death. A. arguta over the concentration of 10 to 50 ㎍/㎖ prevented Aβ (25-35) (10 μM)-induced apoptotic neuronal death, and inhibited H2O2-induced decrease of MTT reduction rate. These results suggest that oxidative stress is implicated in Aβ (25-35)-induced neuronal apoptotic death. Memory impairment was produced by intracerebroventricular (i.c.v) microinjection of 15 nmol Aß (25-35) and examined using passive avoidance test in ICR mice. Chronic treatments with A. arguta (14 days, p.o.) protected memory impairment induced by Aß (25-35). Conclusion : The present study suggests that A. arguta has a therapeutic role for preventing the progression of neurodegenerative disease such as AD.
Background : It is well known that Alzheimer`s disease (AD) is associated with neuronal loss and accumulation of extracellular senile plaque, whose major constituent is β-amyloid peptide (Aβ). In cell cultures, Aβ can directly stimulate neuronal cell death and make neurons susceptible to excitotoxicity which may include glutamate release and N-methyl-D-aspartate (NMDA) receptor activation. There are numerous reports in the literature of Cedrela sinensis (CS) for pro-apoptotic effects. It was hypothesized that CS might protect neurons against neurodegeneration in AD due to its pro-apoptotic effects. The current study aimed to determine the protective effect of ethanol extract from the leave of CS on Aβ (25-35)-induced neuronal cell death in primary cultured rat cortical neurons. Methods and Results : Cerebral neurons were collected from embryonic day 15 SD rat fetuses and were cultured on DMEM with serum. Neurotoxicity experiments were proceeded on cultured neurons after 4-5 days in vitro. Cultured neurons were treated with 10 μM Aβ (25-35) for 24 h or 1 mM NMDA for 20 h to induce neuronal death. CS was applied 20 min before the treatment with Aβ (25-35) or NMDA and also present in the medium during the incubations. Colorimetric MTT assay and Hoechst 33342 staining were used to estimate viability of neurons. Western blot analysis was carried out to examine the expression levels of anti-apoptotic and pro-apoptotic proteins. CS (5 and 10 ㎍/㎖) significantly inhibited Aβ (25-35)-induced apoptotic neuronal cell death in cultured cortical neurons. CS also inhibited Aβ (25-35)-induced change of apoptosis-related protein expression in western blot analysis. Furthermore CS (5 and 10 ㎍/㎖) reuduced NMDA-induced neuronal cell death. This study demonstrated that NMDA glutamate receptor activation is related with Aβ (25-35)-induced neuronal apoptotic death. Conclusion : CS protected culterd neurons against Aβ (25-35)-induced neurotoxicity probably via inhibition of NMDA receptor activation. These results suggest that CS can prevent the progression of neurodegenerative disease such as Alzheimer's disease.
동물실험에서 실크단백질 산 가수분해물을 투여하고 t-BHP투여한 군의 혈액 생화학적 검사 결과t-BHP만 투여한 군과 비교하였을 때 AST, ALT 그리고 LDH가 실크단백질 산 가수분해물의 투여 농도가 높아질수록 수치가 감소하는 것으로 나타났고 세포가 손상할 시에 증가하는 MDA를 간 조직을 대상으로 측정한 결과 실크단백질 산 가수분해물의 농도가 높아질수록 수치가 대조군과 유사한 정도로 감소하는 것으로 보아 간 손상에 관여하는 효소의 누출 억제효과가 있는 것으로 사료된다. HPLC로 간 조직에서의 GSH측정결과t-BHP만 투여한 군과 비교하였을 때 유의적으로 증가하였고 조직학적 검사 결과 t-BHP만 투여한 군과 비교하였을 때 실크단백질 산 가수분해물을 투여한 군이 대조군과 가까운 모습을 보이는 것으로 관찰되어 실크단백질 산가수분해물이 산화적 스트레스로부터의 간 보호 효과가 있는 것으로 사료된다. 따라서 실크단백질 산 가수분해물의 기능적 소재로서의 이용가능성이 확대될 것으로 사료된다.
Background: This study was performed to evaluate the protective effect of Saururus chinensis ethanol extract (SCE) against styrene toxicity in mouse spermatocyte cells [GC-2spd (ts) cell line].
Methods and Results: Cytotoxicity in mouse spermatocyte cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Generation of reactive oxygen species (ROS) was determined using 2’,7’-dichlorodihydrofluorescein diacetate (DCF-DA) assay. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blotting were performed to quantify the mRNA and protein expression levels, resepectiviely, of stress or apoptosis-related genes including p21, p53, heat shock protein 70 (Hsp70), heat shock protein 90 (Hsp90), Bax, Bcl-2, and caspase-3. The results of the MTT assay showed that 50 ㎍/㎖ SCE did not affect cell viability. ROS generation in mouse spermatocyte cells increased by treatment with 100 μM styrene, and decreased by co-treatment with SCE. SCE repressed the mRNA expression of stress-related genes, which increased by styrene treatment. In addition, SCE inhibited the apoptosis of mouse spermatocyte cells by ameliorating mRNA and protein levels of apoptotic genes that were altered by styrene treatment.
Conclusions: These results suggest that SCE may alleviate styrene toxicity in mouse spermatocyte cells by reducing ROS stress and regulating genes related to styrene toxicity.
Background : Alzheimer`s disease (AD) is characterized by neuronal loss and extracellular senile plaque, whose major constituent is β-amyloid (Aβ), a 39-43 amino acid peptide derived from amyloid precursor protein. In cultures, Aβ can directly induce neuronal cell death and can render neurons vulnerable to excitotoxicity which may involve glutamate release and N-methyl-D-aspartate (NMDA) receptor. Silybum marianum (SM) has been used for centuries to treat liver disease due to its antioxidant, and anti-inflammatory properties. In particular, Silymarin, an active constituent of SM, has been reported to decrease lipid peroxidation. Therefore we hypothesized that SM might protect neurons against neurodegeneration in AD due to its antioxidant and anti-inflammatory activities. In the present study, the protective effect of ethanol extract from the stem of SM on Aβ (25-35)-induced neuronal cell death was examined in primary cultured rat cortical neurons. Methods and Results : Primary cultured cortical neurons were prepared using embryonic day 15 SD rat fetuses. Neurotoxicity experiments were performed on cultured neurons after 4-5 days in vitro. The cells were treated with 10 μM Aβ (25-35) or 1 mM NMDA for 36 h or 14 h, respectively. SM was applied 15 min before treatment of Aβ (25-35) or NMDA and also present in the medium during the incubations. The viability of neurons was monitored using a colorimetric MTT assay and Hoechst 33342 staining. The expression levels of anti-apoptotic and pro-apoptotic proteins were detected by western blot. An Ethanol extract of the stem of SM (10 and 50 μg/ml) significantly prevented Aβ (25-35)-induced apoptotic neuronal cell death in cultured cortical neurons. Furthermore SM inhibited Aβ (25-35)-induced decrease of anti-apoptotic protein, Bcl-2, and increase of pro-apoptotic proteins, Bax and active caspase-2, in western blot analysis. SM (10 and 50 μg/ml) also reduced NMDA-induced neuronal cell death. These results suggest that NMDA glutamate receptor activation is implicated in Aβ (25-35) -induced neuronal apoptotic death. Conclusion : The present study suggests that SM has a possible therapeutic role for preventing the progression of neurodegenerative disease such as Alzheimer's disease.
Background : Rice bran is the outer brown layer of the rice grain and produced when rice is milled. The basic components of rice bran are fiber, lipids, amino acids, vitamins, and minerals. The oil extracted from this bran is called rice bran oil. Although whole rice bran in itself does not have anti-cholesterol properties, its oil offers significant benefits. Ischemic stroke is a major cause of morbidity and mortality worldwide. The cessation or critical reduction of blood flow in brain during acute stroke results in deprivation of the oxygen and glucose supplies, which can produce a local brain ischemia and injury. It is well established that excitotoxicity, a type of neurotoxicity evoked by elevated extracellular glutamate level, is a primary contributor to ischemic neuronal death. The present study aims to investigate the neuroprotective effect of Rice bran oil (RBO) on ischemic brain injury in rats and on excitotoxicity in cultured neurons. Methods and Results : Transient focal ischemic brain damage was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/reperfusion) in rats. After MCAO/reperfusion, the infarct and edema volumes of brain tissues were measured using 2,3,5-triphenyltetrazolium chloride (TTC) staining methods. The expression levels of phosphorylated mitogen activated proteins kinases (MAPKs), inflammatory factors, and anti-apoptotic and pro-apoptotic proteins in brain tissue were detected by Western blot. Primary cortical neuronal cultures were prepared using SD rat fetuses on embryonic days 15. Cortical neurons were treated with N-methyl-D-aspartate (NMDA) (1 mM) for 14 h to produce neuronal cell death. Cell viability was measured by MTT assay. RBO inhibited the formation of infartion and edema in MCAO/reperfusion–induced ischemic brains. The increase of phosphorylated MAPKs, inflammatory factors, and proapoptotic proteins and the decrease of antiapoptotic protein in ischemic brains were significantly inhibited by treatment with RBO. RBO (0.01-1ul/ml) inhibited 1 mM NMDA-induced neuronal cell death in cultured cortical neurons. Conclusion : These results suggest that RBO might be a promising therapeutic for neurodegenerative disease such as stroke.
본 연구는 4종의 별의별간(SS) 음료의 간보호 소재로서 의 이용 가능성을 조사하고자 항산화능 평가, t-BHP 와 CCl4로 산화적 손상 및 급성 간독성 유도한in vitro, in vivo 모델을 활용하여 간보호능을 평가하였다. 실험결과, 별의별간 01~04는 50 μM vitamin C 와 유사한 항산화 효과를 나타내었다. HepG2 세포에 t-BHP로 산화 스트레스를 유도한 뒤 나타나는 세포독성에 대해 별의별간 01 및 04에서 농도 의존적인 세포 보호효과를 보였으며, ROS 생성 억제에서 별의별간 01, 03, 04에서 농도의존적인 억제를 나타내었다. 미나리가 혼합된 별의별간 04에 대한 급성 간손상in vivo 모델을 활용하여 간보호능 검증 결과, 별의별간 04는 CCl4로 증가된 혈중 ALT, AST의 유의적 감소, 간 조직중 증가된 MDA 함량 감소 및 감소된 GSH의 유의적 증가를 나타내었다. 또한, 혈청 및 간 조직에서 증가 된 중성지방과 콜레스테롤을 유의적으로 감소시켰다. 이러 한 결과를 종합하며, 별의별간 04는in vitro 및in vivo 모델 에서 산화적 손상에 대해 간보호 효과를 나타내었다
Purpose Rhei Rhizoma (RR) is one of the herbal medicines traditionally used to treat diverse inflammatory diseases. The present study was undertaken to elucidate the antioxidant and anti-inflammatory activities of Rhei Rhizoma on experimental reflux esophagitis (RE) in rats. Methods The antioxidant activity of RR in vitro was measured in terms of radical scavenging capacity such as DPPH and ABTS. RE was produced by ligating both the pylorus and the transitional junction between the forestomach and the corpus. Rhei Rhizoma (125 and 250 mg/kg) were administered every day for 7 days, and its effect was estimated on comparison with RE control and normal rats. Results RR scavenged DPPH and ABTS effectively and IC50ofDPPH and ABTS radical scavenging activity of RR were 4.8 μg/ml and 15.75 μg/ml. The administration of RR decreased the elevated serum ROS in RE control rats. The RE control rats exhibited the down-regulation of antioxidant-related proteins such as Nrf2 and HO-1expression levels in the esophagitis; however, the level in the RR-treated RE rats was significantly higher than that in the RE control rats. Moreover, RE control rats exhibited the up-regulation of the protein expression related to oxidative stress at the esophagitis, but RR administration significantly reduced the expression of inflammatory proteins through the MAPK-independent signaling pathways. The expression of inflammatory mediators and cytokines by NF-κB activation was modulated through blocking the degradation of IκBα. In addition, the oral administration of RR regulated the gastric mucosal damage in RE rats. Conclusion The administration of Rhei Rhizoma effectively ameliorates the inflammatory damage of esophageal mucosa through radical scavenging activity and the activation of the Nrf2/HO-1 pathway.
This study was carried out to evaluate the preventive effect of three forms of Korean ginseng roots (fresh, white and red) against bisphenol A (BPA) toxicity in mouse male germ cells (GC-2spd, TM3, TM4). ROS (reactive oxygen species) generation were measured by DCF-DA (2’,7’-dichlorohydrofluorescein diacetate) assay. Also, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression levels of apoptosis- related genes, Bax (pro-apoptotic gene) and Bcl2 (anti-apoptotic gene). ROS generation was increased by 50 μM BPA, but definitely decreased by treatment with Korean ginseng extracts (fresh, white and red) in mouse male germ cells. In especial, Korean fresh ginseng extract reduced significantly ROS production to normal control. In addition, Korean fresh and white ginseng extracts suppressed the apoptosis of mouse male germ cells by fine-tuning mRNA levels of apoptotic genes changed by BPA. In general, Korean fresh ginseng extract was more effective than white ginseng extract for reducing BPAinduced oxidative stress and apoptosis in mouse male germ cells. Therefore, Korean fresh and white ginseng may help to alleviate biphenol A toxicity in mouse male germ cells.
본 연구는 돌연변이원(mutagen)의 하나인 메틸수은(methylmercuric chloride, MMC)의 세포독성을 알아보기 위하여 배양 NIH3T3 섬유모세포를 재료로 메틸수은의 독성을 산화적 손상측 면에서 조사하였으며, 또한 메틸수은의 세포독성에 대한 꿀풀 (Prunella vulgaris L. var lilacina Nakai) 추출물의 영향을 세포 생존율을 비롯한 SOD-유사 활성(SOD-like activity) 및 지질과산 화(lipid peroxidation, LP) 저해능과 같은 항산화 측면에서 분석 하였다. 본 실험에서 배양 NIH3T3 섬유모세포에 15∼35uM의 메 틸수은을 처리한 결과 처리농도에 비례하여 세포생존율이 대조군 에 비하여 유의하게 감소하였으며, 또한 XTT50값이 34.2uM에서 나타나 고독성(highly-toxic)인 것으로 나타났다. 한편, 항산화제 인 vitamin E는 메틸수은에 의하여 감소된 세포생존율을 유의하게 증가시켰다. 메틸수은의 세포독성에 대한 꿀풀 추출물의 영향에 있 어서, 꿀풀 추출물은 메틸수은에 의하여 감소된 세포생존율을 유의 하게 증가시킴으로서 메틸수은의 세포독성을 방어하였으며, 동시 에, SOD-유사 활성 및 지질과산화 저해능을 보임으로서 항산화능 을 나타냈다. 위의 결과로 부터 메틸수은의 세포독성에 산화적 손 상이 관여하고 있으며, 동시에 꿀풀 추출물은 항산화능에 의하여 메틸수은의 산화적 손상을 효과적으로 방어하였다. 따라서, 꿀풀 추출물과 같은 천연물질은 메틸수은과 같이 산화적 손상과 관련된 중금속의 독성을 방어 내지는 치료하는데 있어 항산화 소재로서의 유효한 기능이 있음을 제시하고 있다.
방사선과 paraquat에 의해서 유도된 간 손상에 대한 홍삼추출물의 보호효과를 비교 연구하였다. ICR계 생쥐에게 X선의 5Gy조사와 paraquat투여 7일 전부터 홍삼추출물(200mg/kg/day)을 투여하였다. 대조군은 생리적 식염수를 투여하고 방사선조사군은 생리적 식염수를 투여하면서 5Gy를 조사하였다. 홍삼추출물 투여군은 7일 전부터 홍삼추출물(200mg/kg/day)을 투여하면서 5Gy를 조사하였다. Paraquat투여군은 7일 전부터 홍삼추출물(200mg/kg/day)을 투여하면서 paraquat(30mg/kg/day)를 투여하였다. 그리고 각각의 실험군에서 간조직의 H2O2, catalase, MDA를 측정하였다. 그 결과 방사선조사군과 paraquat투여군보다 홍삼추출물 투여군에서 catalase함량이 유의성 있게 증가하여 간의 보호효과가 있었으며 H2O2와 MDA함량도 유의성 있게 감소하였다. 홍삼추출물은 간 조직에 대한 방사선조사 및 paraquat투여로부터 매우 우수한 방호제라고 할 수가 있다.
마디풀과(Polygonaceae)에 속하는 소리쟁이(Rumex crispus L.) 추출물이 환경오염원인 염화카드뮴(CdCl2)에 미치는 영향을 조사하기 위하여 배양 NIH3T3 섬유모세포(NIH3T3 fibroblast)를 재료로, 이의 항산화(antioxidation) 및 멜라닌화(melanogenesis)에 대한 영향을 조사하였다. 본 연구에서 CdCl2는 배양 NIH3T3 섬유모세포에 처리한 농도에 비례하여 세포생존율을 유의하게 감소시켰으며(p<0.001), 이 과정에서 XTT50값은 45.7μM로 측정되었다. 또한, 이 값은 Borenfreund and Puerner에 의한 독성판정기준에 따라 고독성인 것으로 나타났다. 한편, 항산화제인 vitamin E는 CdCl2에 의하여 감소된 세포생존율을 유의하게 증가시킴으로서 CdCl2의 세포독성을 방어하였다. CdCl2의 세포독성에 대한 소리쟁이 추출물의 영향에 있어서는, 소리쟁이 추출물은 CdCl2만의 처리에 비하여 세포생존율을 유의하게 증가시켰으며(p<0.001), 또한 DPPH-라디칼 소거능(DPPH-radical scavenging activity)에 의한 항산화능을 나타냈다. 멜라닌화에 있어서, 소리쟁이 추출물은 CdCl2에 의하여 증가된 티로시나제(tyrosinase) 활성과 총멜라닌양을 모두 유의하게 감소시켰다(p<0.001). 이상의 결과로부터 CdCl2의 세포독성에 산화적 손상이 관여하고 있으며, 소리쟁이 추출물은 항산화능에 의하여 CdCl2의 세포독성을 효과적으로 방어하였다. 또한 소리쟁이 추출물은 티로시나제 활성과 총멜라닌양을 유의하게 감소시킴으로서 멜라닌화를 방어하는데 효과적인 것으로 나타났다. 따라서 소리쟁이와 같은 천연물을 대상으로 CdCl2 처럼 산화적 손상과 관련된 중금속계 환경오염원의 독성으로부터 보호할 수 있는 물질에 대한 탐색 및 개발은 이의 활용적 가치가 크다고 생각된다.