A phosphorylation (phosphate precipitation) technology of metal chlorides is considering as a proper treatment method for recovering the fission products in a spent molten salt. In KAERI’s previous precipitation tests, the powder of lithium phosphate (Li3PO4) as a precipitation agent reacted with metal chlorides in a simulated LiCl-KCl molten salt. The reaction of metal chlorides containing actinides such as uranium and rare earths with lithium phosphate in a molten salt was known as solidliquid reaction. In order to increase the precipitation reaction rate the powder of lithium phosphate dispersed by stirring thoroughly in a molten salt. As one of the recovery methods of the metal phosphates precipitated on the bottom of the molten salt vessel cutting method at the lower part of the salt ingot is considered. On the other hand, a vacuum distillation method of all the molten salt containing the metal phosphates precipitates was proposed as another recovering method. In recent study, a new method for collecting the phosphorylation reaction products into a small recovering vessel was investigated resulting in some test data by using the lithium phosphate ingot in a molten salt containing uranium and three rare earth elements (Nd, Ce, and La). The phosphorylation experiments using lithium phosphate ingots carried out to collect the metal phosphate precipitates and the test result of this new method was feasible. However, the reaction rate of test using lithium phosphate ingot is very slower than that of test using lithium phosphate powder. In this presentation, the precipitation reactor design used for phosphorylation reaction shows that the amount of molten salt transferred to the distillation unit will reduce by collecting all of the metal phosphates that will be generated using lithium phosphate powder into a small recovering vessel.
The stabilization technology for the damaged spent fuel is being developed to process the damaged fuel into sound pellet suitable for dry re-fabrication. It requires several treatments including oxidative decladding followed by reduction treatment for oxidized powder closely related to the quality of oxidized powders for pellet fabrication. For the development of operating condition for the reduction treatment, in this study, we evaluated the effect of air-cylinder based vertical shaking previously applied to oxidative decladding on powder reduction. For U3O8 of 50-100 g, the reduction test were applied with and without vertical shaking at 700°C under reduction atmosphere (Ar + 4%H2) and the concentration of hydrogen in effluent was measured to evaluate the reduction reaction. It was found that the vertical shaking system has allowed the reaction time of 50 g and 100 g U3O8 reduced by 33% compared to the test in static mode. Based on XRD analysis, the better crystallinity of the products was also achieved.
Instead of using expensive platinum, carbon anodes could potentially be utilized in the process of reducing oxides in LiCl-Li2O molten salt at a high cell potential. However, this high potential leads to the generation of a mixture of anodic gases containing toxic and corrosive gases such as chlorine (Cl2), oxygen (O2), carbon monoxide (CO), and carbon dioxide (CO2). To better understand this gas mixture, we conducted real-time analyses of the gases generated on the carbon anode during the TiO reduction reaction in the molten salt at 650°C, using a MAX-300-LG gas analyzer. Our results indicate that the ratio of CO/O2/CO2/Cl2 in the gas mixture is significantly influenced by the composition of the salt, and that removing the sources of oxygen ions in the salt increases the likelihood of generating toxic and corrosive Cl2 gas.
Pyroprocessing is a promising technique for the treatment of damaged fuel debris (corium) generated by severe nuclear accidents. The debris typically consists of (U, Zr)O2 originating from the UO2 fuel and Zr alloy-based cladding. By converting the corium to a metallic form, the principal components of the fuel can be recovered through subsequent electrorefining, allowing for long-term storage or final disposal. A study investigated the reduction of zirconium oxide compounds by Li metal as a reductant in molten LiCl salt. This research explored the feasibility of treating damaged nuclear fuel debris, which mainly consists of (U, Zr)O2. The results showed that ZrO2 was successfully reduced to Zr metal by Li metal in LiCl salt at 650C without the formation of Li2ZrO3. In particular, Zr metal was produced without the formation of Li2ZrO3 when LiCl salt containing a high concentration of Li metal was used. However, Zr metal was produced with Li2ZrO3 when LiCl salt containing both Li metal and Li2O was added. This suggests that the concentration of Li metal in the LiCl salt is an important factor in determining the formation of Li2ZrO3. The study also demonstrated that Li2ZrO3 was partially reduced to Zr metal by Li metal in LiCl salt. This finding suggests that Li metal may be effective in reducing other oxide compounds in molten LiCl salt, which could be useful in the treatment of corium. Overall, the research provides valuable insights into the feasibility of using pyroprocessing for the treatment of corium. The ability to recover and store the principal components of the fuel through electrorefining could have important implications for the long-term management of nuclear waste.
The conditions for minimizing dyes and additives when dyeing cellulose fibers such as linen, ramie, and hemp fabrics were obtained using glucose, an organic reducing agent. Dyeability and colorfastness were measured through repeated dyeing. The overall surface dyeing concentration followed the linen>hemp>ramie order, and most of the colors were in the range of PB (PurpleBlue). As the glucose concentration increased, the blue series was strengthened, and the color was dark and clear. It was determined that glucose the concentration of 4g/L was appropriate for minimizing the amount of dye. When the dyeing temperature was 30℃, the surface dyeing concentration was the highest, and the color was dark and clear. Although the dyeing concentration increased as NaOH concentration increased, 3g/L (pH 12.37) was considered appropriate for the minimum NaOH concentration, which becomes gradual after the dyeing concentration increased rapidly. It was found that the surface dyeing concentration, when repeated six times for 5 min, was better than that of dyeing once for 30 min. Washing, rubbing, and perspiration colorfastness were all found to be excellent in grades 4–4-5, and colorfastness to light was excellent in grades 5 of linen and hemp and grade 4 of ramie.
High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100oC. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.
With rising concerns about pesticide spray drift by aerial application, this study attempt to evaluate aerodynamic property and collection efficiency of spray drift according to the leaf area index (LAI) of crop for preventing undesirable pesticide contamination by the spray-drift tunnel experiment. The collection efficiency of the plant with ‘Low’ LAI was measured at 16.13% at a wind speed of 1 m·s-1. As the wind speed increased to 2 m·s-1, the collection efficiency of plant with the same LAI level increased 1.80 times higher to 29.06%. For the ‘Medium’ level LAI, the collection efficiency was 24.42% and 43.06% at wind speed of 1 m·s-1 and 2 m·s-1, respectively. For the ‘High’ level LAI, it also increased 1.24 times higher as the wind speed increased. The measured results indicated that the collection of spray droplets by leaves were increased with LAI and wind speed. This also implied that dense leaves would have more advantages for preventing the drift of airborne spray droplets. Aerodynamic properties also tended to increase as the LAI increased, and the regression analysis of quadric equation and power law equation showed high explanatory of 0.96-0.99.
In this paper, we presented a hybrid composite of graphene quantum dots (GQDs)-modified three-dimensional graphene nanoribbons (3D GNRs) composite linked by Fe3O4 and CoO nanoparticles through reflux and ultrasonic treatment with GQDs, denoted as 3D GQDs-Fe3O4/CoO@GNRs (3D GFCG). In this hybrid, the 3D GNRs framework strengthened the electrical conductivity and the synergistic effects between GQDs and 3D GFCG enhanced the oxygen reduction reaction (ORR) activity of the nanocomposite. The results imply that decorating GQDs with other electro-catalysts is an effective strategy to synergistically improve their ORR activity.
The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.
한국의 전통 과자인 유과는 거의 모든 공정이 수작업으로 제조되기 때문에 공정 중 작업자 및 작업도구 등에 의한 교차오염으로 인한 안전문제가 제기되고 있다. 본 연구에서는 유과 제조 공정 중 찹쌀의 불림 단계에서 증가된 미생물을 제어하기 위하여 항균 활성이 있는 용액 9가지 용액(40% 자몽종자 추출물, 100% 계피 추출물, 70% 에탄올, 100% 식초, 0.2% 차아염소산나트륨, 40% 초산나트륨, 40% 탄산수소나트륨, 40% 사과산, 40% 구연산)을 이용하여 Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Bacillus cereus에 대해 항균 효과를 비교 확인하였다. Disk diffusion법을 통해 40% 사과산과 구연산에서 높은 항균 효과를 확인할 수 있었고, 추가로 항균용액의 농도, 처리방법 및 시간을 최적화한 결과 1% 사과산-구연산을 10분 동안 처리 시 세균 5종을 모두 사멸시켜 높은 항균효과를 확인할 수 있었다. 불림단계의 찹쌀에 1% 사과산-구연산으로 정치 및 교반하면서 10분 동안 세척하였을 때 일반세균과 대장균군의 수가 각각 4.0 Log CFU/g와 5.0 Log CFU/g씩 감소하였다. 이상의 결과로 볼 때 1% 사과산-구연산으로 불린 찹쌀에 대해 침지와 교반으로 10분 동안 처리함으로써 전통 유과 제조과정 중 쌀의 불림단계에서 증가된 미생물을 효과적으로 저감화 할 수 있음을 확인하였다.
PURPOSES : This study describes the experimental findings on the mechanical properties of calcium aluminate cement (CAC)-based repair mortars with or without natural cellulose fiber (NCF). Additionally, the effect of adding NCF to the reduction of fugitive dust in the CAC powder was examined.
METHODS : To produce mortar, four different levels of NCF (0.0.5, 1.0, and 2.0% by binder weight) were adopted, and the water-binder ratio was fixed at 0.485. The flow, strength characteristics, absorption, and surface electrical resistivity of the mortars were measured at predetermined periods. Additionally, SEM observations were performed to examine the microstructural changes and hydrates formed on the 28 day-mortar samples.
RESULTS : The addition of NCF led to a decrease in fugitive dust. Regarding the mechanical properties of the mortars, that with 0.5% NCF exhibited a better performance in terms of strength development and surface electric resistivity compared to those of other mortars. However, the addition of NCF was less effective in the enhancement of the absorption of mortars. Further, we discovered that the microstructures of the mortars with additional NCF were comparatively dense compared to those without NCF.
CONCLUSIONS : The appropriate addition of NCF can enhance the performance of CAC-based repair materials. However, further studies on the durability of CAC with the addition of NCF are needed to determine the optimal mixture.
The conversion of CO2 into solar fuels by photocatalysis is a promising way to deal with the energy crisis and the greenhouse effect. The introduction of oxygen vacancy into semiconductor has been proved to be an effective strategy for enhancing CO2 photoreduction performance. Herein, TiO2- x nanostructures have been prepared by a simple solvothermal method and engineered by the reaction time. With the prolonging of reaction time, the oxygen vacancy signal gradually increases while the band gap becomes narrow for the as-synthesized TiO2- x nanostructures. The results show that the TiO2- x-6 h, TiO2- x-24 h, and TiO2- x-48 h samples have the main product of CH4 (more) and CO (less) for CO2 photoreduction. Among the three oxygen vacancy photocatalysts, the TiO2- x-24 h sample shows the highest CH4 generation rate of 41.8 μmol g− 1 h− 1. On the basis of photo/electrochemical measurements, the TiO2- x-24 h sample exhibits efficient electron–hole separation and charge transfer capabilities, thus allows much more electrons to participate in the reaction and finally promotes the photocatalytic CO2 reduction reaction. It further confirms that the optimization of oxygen vacancy concentration could facilitate the photoinduced charge separation and accordingly improve photocatalytic CO2 conversion.
The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.
This study investigated changes in psychological stress levels of 60 firefighters after participation in an eight-week Equine-Assisted Learning (EAL) program consisting of 16 sessions. The Korean versions of the Posttraumatic Diagnosis Scale (PDS-K), the Center for Epidemiological Studies Depression Scale (K-CESD), and the Difficulties in Emotional Regulation Scale (K-DERS) were used for measurements. Participants were divided into two groups according to level of posttraumatic stress symptoms (PTSS): the PTSS risk group and the PTSS non-risk group. Results showed that PDS-K, K-CESD, and K-DERS scores were significantly reduced after the program in the PTSS risk group. Significant reduction was also found in all sub-scales of PDS-K: re-experiencing, avoidance/emotional numbing, and hyperarousal. Moreover, in the PTSS risk group, there were greater improvements with significant group x time interactions. These findings suggest that EAL is effective in relieving PTSD and PTSD-related symptoms of firefighters with subsyndromal or more severe levels of PTSD.
선박용 엔진에서 배출되는 배기가스에는 다량의 수분과 미세먼지를 포함하고 있다. 미세먼지에는 여과성 미세먼지와 배기 배 출 후 액상으로 변화하는 응축성 미세먼지가 포함되어 있으며 배출 전에 걸러지는 고체상 미세먼지보다 응축성 미세먼지가 더 많은 것으 로 보고되고 있다. 본 연구에서는 배기가스의 배기열과 수분을 회수하고 응축성 미세먼지를 제거하기 위한 실험장치를 실험실 내의 가스 보일러 배기가스를 이용하여 테스트 하였다. 배기가스는 1차적으로 냉각방식으로 수분과 응축성 미세먼지가 제거되고 2차적으로 흡수제 방식에 의해 추가적으로 수분이 제거되었다. 상대습도 측정에 의한 배기가스 수분 제거율을 계산하면 1단계 배기냉각 방식으로 73%, 2단 계 흡수제 방식으로 90% 제거되는 것으로 측정되었다. 이 과정에서 응축성 미세먼지는 80~90% 제거되는 것으로 측정되었다. 개발 시스템 에 의해 회수된 열은 공정열로 활용할 수 있으며, 회수된 물은 수처리 과정을 통해 공정수로 활용할 수 있다. 또한 현재 관리 규제가 되고 있지 않지만 미세먼지의 주요 원인인 응축성 미세먼지를 효과적으로 제거할 수 있을 것으로 기대된다.