검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 492

        101.
        2022.10 구독 인증기관·개인회원 무료
        Decommissioning waste is generated at all stages during the decommissioning of nuclear facilities, and various types of radioactive waste are generated in large quantities within a short period. Concrete is a major building material for nuclear facilities. It is mixed with aggregate, sand, and cement with water by the relevant mixing ratio and dried for a certain period. Currently, the proposed treatment method for volume reduction of radioactive concrete waste was involved thermomechanical and chemical treatment sequentially. The aggregate as non-radioactive materials is separated from cement components as contaminated sources of radionuclides. However, to commercialize the process established in the laboratory, it is necessary to evaluate the scale-up potential by using the unit equipment. In this study, bench-scale testing was performed to evaluate the scale-up properties of the thermomechanical and chemical treatment process, which consisted of three stages (1: Thermomechanical treatment, 2: Chemical treatment, 3: Wastewater treatment). In the first stage, lab, bench, and pilot scale thermomechanical tests were performed to evaluate the treated coarse aggregate and fines. In the second stage, the fine particles generated by the thermomechanical treatment process, were chemically treated using dissolution equipment, after then the removal efficiency and residual of cement in the small aggregate was compared with laboratory results. The final stage, the secondary wastewater containing contaminant nuclides was treated, and the contaminant nuclides could be removed by chemical precipitation method in the scale-up reactors. Furthermore, an additional study was required on the solid-liquid separation, which connected each part of the equipment. It was conducted to optimize the separation method for the characteristics of the particles to be separated and the purpose of separation. Therefore, it is expected that the basic engineering data for commercialization was collected by this study.
        102.
        2022.10 구독 인증기관·개인회원 무료
        To transport radioactive waste generated during the decommissioning of Kori Unit 1, transport containers of various sizes are being developed. Since these radioactive decommissioning waste transport containers are larger than the specifications of the existing IP-2 type transport containers, which are for operational radioactive waste, design of the CHEONG-JEONG-NURI needs to be changed when transporting them to disposal facility using the CHEONG-JEONG-NURI, which carries operational radioactive waste. In this study, design changes of the CHEONG-JEONG-NURI, cargo hold modification plan for efficient loading of radioactive decommissioning waste transport containers and radioactive decommissioning waste container loading arrangement (plan) were evaluated during the design life period (year 2034). First, as only the IP-2 type transport container with a weight of 7.5 tons and size of 1.6 m (W) × 3.4 m (L) × 1.2m (H) can be loaded in the cargo hold, if only the decommissioning radioactive waste containers are to be loaded and transported, cargo hold needs to be reinforced. Second, when both the radioactive decommissioning waste transport container of the same size as the current operating radioactive waste transport container, and the radioactive decommissioning waste transport container of the same size as the ISO-type transport container are to be loaded in the cargo hold of the CHEONG-JEONG-NURI and transported, the overall design changes (cargo hold size and load reinforcement) are required. Third, since the safe working load of the CHEONG-JEONG-NURI crane is 12.5-tons, it shall be replaced with a ship crane of 35-tons or more to handle the decommissioning radioactive waste container smoothly, or a gantry crane used in general port facilities shall be installed. When replacing with a ship crane of 35-tons or more, ship buoyancy, ship stability, and ship structural safety shall be considered. The possibility of moving in all 4 directions for smooth operation, and the possibility of lifting the transport container to a position higher than the height of the CHEONG -JEONG-NURI shall be considered. Loading and transporting all decommissioning radioactive waste containers, which are the same size as IP-2 and ISO-type transport containers, in the cargo hold of the CHEONG-JEONG-NURI is uneconomical due to the need for overall design changes (cargo size and load reinforcement, etc.). Also, delay in delivery of the operation wastes is expected due to a long-term design change period. Therefore, it is considered reasonable to load and transport only the decommissioning radioactive waste transport container, which is the same size as the IP-2 transport container, in the cargo hold.
        103.
        2022.10 구독 인증기관·개인회원 무료
        In NPP (nuclear power plant), boric acid is used as a neutron absorbent. So radioactive boric acid waste are generated from various waste streams such as discharge or leakage of reactor coolant water, floor drains, drainage of equipment for operation or maintenance, reactor letdown flows and etc. Depending on KHNP, 20,015 drum (200 L drum) of concentrated boric acid waste were stored in KOREA NPP until 2019. In previous study, our group suggested the waste up-cycling process synthesizing B4C neutron absorber using boric acid waste and activated carbon waste to innovatively reduce radioactive wastes. Radioactive activated carbon waste was utilized in off gas treatment system of NPP to capture nuclide such as I-131, C-14 and H-3. Activated carbon waste is treated as low-level radioactive waste and pre-treatment system for removing nuclide from the activated carbon waste is needed to use B4C up-cycling process. In this study, microwave treatment system is suggested to treat the activated carbon waste. Activated carbon waste was exposed to microwave for a few minutes and temperature of the waste was dramatically increased over 400°C. Nuclide in the activated carbon waste were selectively removed from the waste without massive production of secondary off gas waste.
        104.
        2022.10 구독 인증기관·개인회원 무료
        Solid radioactive waste such as rubble, trimmed trees, contaminated soil, metal, concrete, used protective clothing, secondary waste, etc. are being generated due to the Fukushima nuclear power plant accident occurred on March 11, 2011. Solid radioactive waste inside of Fukushima NPP is estimated to be about 790,000 m3. The solid radioactive waste includes combustible rubble, trimmed trees, and used protective clothing, and is about 290,000 m3. These will be incinerated, reduced to about 20,000 m3 and stored in solid waste storage. The radioactive waste incinerator was completed in 2021. About 60,000 m3 of rubble containing metal and concrete with a surface dose rate of 1 mSv/h or higher will be stored without reduction treatment. Metal with a surface dose rate of 1 mSv/h or less are molten, and concrete undergoes a crushing process. About 60,000 m3 of contaminated soil (0.005 ~1 mSv/h) will be managed in solid waste storage without reduction treatment. The amount of secondary waste generated during the treatment of contaminated water is about 6,500 huge tanks, and additional research is being conducted on future treatment methods.
        105.
        2022.10 구독 인증기관·개인회원 무료
        An induction melting facility includes several work health and safety risks. To manage the work health and safety risks, care must be taken to identify reasonably foreseeable hazards that could give rise to risks to health and safety, to eliminate risks to health and safety so far as is reasonably practicable. If it is not reasonably practicable to eliminate risks to health and safety, attention have to be given to minimize those risks so far as is reasonably practicable by implementing risk control measures according to the hierarchy of control in regulation, to ensure the control measure is, and is maintained so that it remains, effective, and to review and as necessary revise control measures implemented to maintain, so far as is reasonably practicable, a work environment that is without risks to health or safety. The way to manage the risks associated with induction melting works is to identify hazards and find out what could cause harm from melting works, to assess risks if necessary – understand the nature of the harm that could be caused by the hazard, how serious the harm could be and the likelihood of it happening, to control risks – implement the most effective control measures that are reasonably practicable in the circumstances, and to review control measures to ensure they are working as planned.
        106.
        2022.10 구독 인증기관·개인회원 무료
        The Korea government decided to shut down Kori-1 and Wolsung-1 nuclear power plants (NPPs) in 2017 and 2019, respectively, and their decommissioning plans are underway. Decommissioning of a NPP generates various types of radioactive wastes such as concrete, metal, liquid, plastic, paper, and clothe. Among the various radioactive wastes, we focused on radioactive-combustible waste due to its large amount (10,000–40,000 drums/NPP) and environmental issues. Incineration has been the traditional way to minimize volume of combustible waste, however, it is no longer available for this amount of waste. Accordingly, an alternative technique is required which can accomplish both high volume reduction and low emission of carbon dioxide. Recently, KAERI proposed a new decontamination process for volume reduction of radioactivecombustible waste generated during operation and decommissioning of NPPs. This thermochemical process operates via serial steps of carbonization-chlorination-solidification. The key function of the thermochemical decontamination process is to selectively recover and solidify radioactive metals so that radioactivity of the decontaminated carbon meets the release criteria. In this work, a preliminary version of mass flow diagram of the thermochemical decontamination process was established for representative wastes. Mass balance of each step was calculated based on physical and chemical properties of each constituent atoms. The mass flow diagram provides a platform to organize experimental results leading to key information of the process such as the final decontamination factor and radioactivity of each product.
        107.
        2022.10 구독 인증기관·개인회원 무료
        The design life of the radioactive waste carrier, the CHEONG JEONG NURI, is in the year 2034, when the decommissioning of Kori Unit 1 is expected. As only IP-2 type transport containers (7.5- tons, 1.6 m (W) × 3.4 m (L) × 1.2 m (H)) can be loaded onto the CHEONG-JEONG-NURI, the radioactive decommissioning waste (RDW) transport containers neither of 35-tons maximum weight nor ISO type can be accommodated. Accordingly, either a new vessel (NV) to replace the CHEONGJEONG- NURI or a change in the loading dock design of the CHEONG-JEONG-NURI is required. In this study, the necessity of building a NV capable of accommodating the issued containers above is analyzed focusing, (1) the estimated building and operating costs of the NV, and (2) the economic feasibility of the NV ‘s RDW transportation scenarios. Among bulk carriers, the CHEONG-JEONG-NURI was designed as handy-size ship type. It is operated reflecting various design requirements to satisfy the domestic/international legal requirements. To estimate the cost of the NV, the same vessel type and design criteria of the CHEONG-JEONGNURI were considered. The shipping price information of the Korea Ocean Business Corporation, as of August 2022, the building cost of bulk carrier Handysize (building NV type) is about USD 30 million. Considering domestic/overseas variables, such as future labor costs, international inflation, interest rate hike, etc., the building costs are expected to continuously rise. Furthermore, vessel operation costs of crew labor, vessel, fuel, and insurance are incurred separately. Due to the increase in oil price, and wages of special positions, such as general seafarers and radiation safety managers, the NV’s operating cost is expected to be about KRW 3.8 billion every year, which is about KRW 1.1 billion higher than that of the CHEONG-JEONG-NURI. The expected total cost of building and operating the NV is about KRW 65 billion. Assuming the repayment period of the NV building cost is the same as that of the CHEONG-JEONG-NURI building cost reimbursement agency and analyzing the economic feasibility of the transport scenario of the NV built by adding up about KRW 3.8 billion of the operating cost, cost about KRW 880 million per voyage of the NV built is expected, which being KRW 620 million more than the current cost (KRW 260 million) per trip of the CHEONG-JEONG-NURI. Therefore, transporting the RDW to the disposal facility through sustainable use of the CHEONGJEONG- NURI (considering design life extension and design change) is evaluated as more appropriate than building NV.
        108.
        2022.10 구독 인증기관·개인회원 무료
        Gyeongju radioactive waste repository has been operated to dispose low and intermediate level radioactive waste in Korea since 2016. Currently, only deep geological disposal facility (1st) is in operation, surface disposal facility (2nd) is scheduled to operate from 2024. As a result, the annual amount of radioactive waste that can be disposed of at deep geological disposal facilities and surface disposal facilities is almost determined. According to this result, it was possible to derive the total annual disposal amount to dispose of all radioactive waste at the Gyeongju repository after landfill disposal facility (3rd) construction. To evaluate it, a predictive model has been designed and radioactive waste generation, storage, and disposal data were input. The predictive model is based on system dynamics, which is useful to analyze the correlation between input variables. As a result of analysis, radioactive waste generation amount and maximum annual radioactive waste disposal were predicted to reach 741,615 drum and 17,030 drum per year respectively. From these results, it seems that the expansion of radioactive waste acceptance system or temporary storage is necessary.
        109.
        2022.10 구독 인증기관·개인회원 무료
        This study introduces the licensing process carried out by the regulatory body for construction and operation of the 2nd phase low level radioactive waste disposal facility in Gyeongju. Also, this study presents the experience and lessons learned from this regulatory review for preparing the license review for the next 3rd phase landfill disposal facility. Korea Radioactive Waste Agency (KORAD) submitted a license application to Nuclear Safety and Security commission (NSSC) on December 24, 2015 to obtain permit for construction and operation of the national engineered shallow land disposal facility at Wolsong, Gyeongju. NSSC and Korea Institute of Nuclear Safety (KINS) started the regulatory review process with an initial docket review of the KORAD application including Safety Analysis Report, Radiological Environmental Report and Safety Administration Rules. After reflecting the results of the docket review, the safety review of revised 10 application documents began on November 29, 2016. Total 856 queries and requests for additional information were elicited by thorough technical review until November 16, 2021. As the Gyeongju and Pohang earthquakes occurred in September 2016 and November 2017, respectively, the seismic design of the disposal facility for vault and underground gallery was enhanced from 0.2 g to 0.3 g and the site safety evaluation including groundwater characteristics was re-investigated due to earthquake-induced fault. Also, post-closure safety assessments related to normal/abnormal/human intrusion scenarios were re-performed for reflecting the results of site and design characteristics. Finally, NSSC decided to grant a license of the 2nd phase low level radioactive waste disposal facility under the Nuclear Safety Laws in July 2022. This study introduces important issues and major improvements in terms of safety during the review process and presents the lessons learned from the experience of regulatory review process.
        110.
        2022.10 구독 인증기관·개인회원 무료
        The U.S. Nuclear Regulatory Commission (NRC) states that every environmental report prepared for the licensing stage of a Pressurized Water Reactor shall contain a statement concerning risk during the transportation of fuel and radioactive wastes to and from the reactor. Thus, the licensee should ensure that the radiological effect in accidents, as well as normal conditions in transport, do not exceed certain criteria or be small if cannot be numerically quantified. These are specified in 10 CFR Part 51 and applied in NUREG-1555 Supplement 1 Revision 1, which deals with Environmental Standard Review Plan. Corresponding regulations in Korea would be the Nuclear Safety and Security Commission Notice No. 2020-7. In Appendix 2 of the Notice, guides on the radiological environmental report for production and utilization facilities, spent nuclear fuel interim storage facilities, and radioactive waste disposal facilities. In this guide, unlike the regulations in the U.S., there are no obligations for radiological dose assessment for workers and public during the transportation. Therefore, overall regulations and their legal basis related to risk assessment during transportation conducted for the environmental report in the U.S. were analyzed in this study. On top of that, through the comparison with regulations in Korea, differences between the two systems were figured out. Finally, this study aims to find the points in terms of assessing transport risk to be revised in the current regulatory system in Korea.
        111.
        2022.10 구독 인증기관·개인회원 무료
        A radioactive waste disposal facility needs to be developed in a way to protect present and future generations and its environment. A safety assessment is implemented for normal and abnormal scenarios and human intrusion scenarios as a part of a safety case in developing a disposal facility for the radioactive waste. The human intrusion scenarios include a well scenario which takes into account various potential exposure groups (PEGs) who use a groundwater well contaminated with radionuclides released from the disposal facility. It is observed that a pumping rate has a negative correlation with the biosphere dose conversion factor (BDCF) in the well scenario. C-14 is shown to be a key radionuclide in the well scenario, and a special model based on the carbon cycle is applied for C-14. For Tc-99, an adsorption coefficient should be adjusted to be suitable for the site. The safety assessment for the radioactive waste disposal facility is successfully carried out for the well scenario. However, it is observed that site-specific models needs to be developed and sitespecific input data need to be collected in order to avoid unnecessary conservatism.
        112.
        2022.10 구독 인증기관·개인회원 무료
        Lubricant oil waste contaminated with radioactive materials generated at nuclear facilities can be disposed of as industrial waste in accordance with self-disposal standards if only radioactive materials are removed. Lubricant oil used in nuclear facilities consists of oil of 75-85% and additives of 15-25%, and lubricant oil waste contains heavy metals, carbon, glycol, etc. In addition, lubricant oil waste from nuclear facilities contains metallic gamma-ray emission radionuclides including Co-60, Cs-137 and volatile beta-ray emission radionuclides such as C-14 and H-3, which are not present in lubricant oil waste from general industries and these radionuclides must be eliminated according to the Atomic Energy Act. In general industries, the wet treatment technologies such as acid-white soil treatment, ion purification, thin film distillation, high temperature pyrolysis, etc. are used as the refining technology of lubricant oil waste, but it is difficult to apply these technologies to nuclear industrial sites due to restrictions related with controlling the generation of secondary radioactive waste in sludge condition containing radionuclides of metal components, and limiting the concentration of volatile radioactive elements contained in refined oil to be below the legal threshold. In view of these characteristics, the refinement system capable of efficiently refining and treating lubricant oil waste contaminated with radioactive materials generated in nuclear facilities has been developed. The treatment process of this R&D system is as follows. First, the moisture in the radioactive lubricant oil waste pretreated through the preprocessing system is removed by the heated evaporating system, and the beta-emission radionuclides of H-3 and C-14 can be easily removed in this process. Second, the heated lubricant oil waste by the heated evaporating system is cooled through the heat exchanging system. Third, the particulate matters with gamma-ray emission radionuclides are removed through the electrostatic ionizing system. Forth, the lubricant oil waste is stored in the storage tank and the purified lubricant oil waste is discharged to the outside after sampling and checking from the upper, middle and lower positions of the lubricant oil waste stored in the storage tank. Using this R&D system, it is expected that the amount of radioactive waste can be reduced by efficiently refining and treating lubricant oil waste in the form of organic compounds contaminated with radioactive materials generated in nuclear facilities.
        113.
        2022.10 구독 인증기관·개인회원 무료
        Organic complexing agents may affect the mobility of radionuclides at low- and intermediate-level radioactive waste repositories. Especially, isosaccharinic acid (ISA) is the main cellulose degradation product under high pH conditions in cement pore water. ISA can combine with radionuclides and form stable complexes that adversely influence adsorption in the concrete phase, resulting in radionuclides to leach to the near- and far-fields of repositories. This study focuses on investigating the sorption of ISA onto engineered barriers such as concrete, thereby studying adsorption isotherms of ISA on concrete and comparing various isotherm models with the experimental data. The adsorption experiment was conducted in three background solutions, groundwater (adjusted to pH 13 using NaOH), State 1 (artificial cement pore water, pH 13.3), and State 2 (artificial cement pore water, pH 12.5), in a batch system at a temperature of 20°C. Concrete was characterized using BET, Zeta-potential analyzer, XRD, XRF, and SEM-EDS. ISA concentrations were detected using HPLC. The experimental data were best fitted to one-site Langmuir isotherm; On the other hand, either two-site isotherm or Freundlich isotherm couldn’t give reasonable fitting to the experimental data. The observed ISA sorption behavior on concrete is crucial for the disposal of radioactive waste because it can significantly lower the concentration of ISA in the pore water. Although one-site Langmuir isotherm might effectively represent the sorption behavior of ISA on concrete, the underlying mechanism is still unknown, and further investigation should be done in the near future.
        114.
        2022.10 구독 인증기관·개인회원 무료
        According to the ‘Regulations on the Delivery of Low and Medium Level Radioactive Waste’, Notification No. 2021-26 of the Nuclear Safety and Security Commission, a history of radioactive waste and a total amount of radioactivity in a drum are mandatory. At this time, the inventory of radionuclides that make up more than 95% of the total radioactivity contained in the waste drum should be identified, including the radioactivity of H-3, C-14, Fe-55, Co-58, Co-60, Ni-59, Ni-63, Sr- 90, Nb-94, Tc-99, I-129, Cs-137, Ce-144, and total alpha. Among nuclides to be identified, gamma-emitting nuclides are usually analyzed with a gamma ray spectrometer such as HPGe. When a specific gamma-ray is measured with a detector, several types of peaks generated by recombination or scattering of electrons are simultaneously detected in addition to the corresponding gamma-ray in gamma-ray spectroscopy. Among them, the full energy peak efficiency (FEPE) with the total gamma energy is used for equipment calibration. However, this total energy peak efficiency may not be accurately measured due to the coincidence summing effect. There are two types of coincidence summing: Random and True. The random coincidence summing occurs when two or more gamma particles emitted from multiple nuclides are simultaneously absorbed within the dead time of the detector, and this effect becomes stronger as the counting rate increases. The true coincidence summing is caused by simultaneous absorption of gamma particles emitted by two or more consecutive energy levels transitioning from single nuclide within the dead time of the detector. This effect is independent of the counting rate but affected by the geometry and absolute efficiency of the detector. The FEPE decreases and the peak count of region where the energy of gamma particles is combined increases when the coincidence summing occurs. At the Radioactive Waste Chemical Analysis Center, KAERI, samples with a dead time of 5% or more are diluted and re-measured in order to reduce the random coincidence summing when evaluating the gamma nuclide inventory of radioactive waste. In addition, a certain distance is placed between the sample and the detector during measurement to reduce the true coincidence summing. In this study, we evaluate the coincidence summing effect in our apparatus for the measurement of radioactive waste samples.
        115.
        2022.10 구독 인증기관·개인회원 무료
        Encapsulation using cement as a solidification method for disposal of radioactive waste is most commonly used in most advanced countries in the nuclear technology to date due to its advantages such as low material cost and accumulated technology. However, in case of cement solidification, since moisture or hydroxyl group in cement is decomposed by radioactivity, it may happen that gas is generated, structural stability is weakened, and leachability is increased due to low chemical durability. Therefore, the various new solidification methods are being developed to replace it. As one of these alternative technologies, for dispersible metal compounds generated through the incineration replacement process, the study on engineering element technology for powder metallurgy is under way, which overcomes the interference problem between mechanical elements and media that may occur during the process such as the homogeneous mixing process of the target powder substance and additives used in the powder metallurgy concept-based sintering process for the solidification of the final glass composite material (GCM), the process of creating a compressed molded body using a specific mold, the process of final sintering treatment. The solidification process of dispersible radioactive waste can be largely divided into pre-treatment stage, molding stage, and sintering stage, and the characteristics of the final radioactive waste solidification material can vary depending on the solidification treatment characteristics of each stage. In relation with these characteristics, the matters to be considered when designing device for each stage to solidify dispersible radioactive waste (property of super-mixing device for homogenized powder formation, structural geometry and pressure condition of molding device for production of compressed molded body, temperature and operation characteristics of sintering device for final glass composite material (GCM), etc.) are drawn out. It is expected that the solidification device design reflecting these considerations will meet all disposal conditions of radioactive waste material, such as compressive strength and leaching characteristics of solidified radioactive waste material, and create a uniformized solidification of radioactive waste material.
        116.
        2022.10 구독 인증기관·개인회원 무료
        Glass wool, the primary material of insulation, is composed of glass fibers and is used to insulate the temperature of steam generators and pipes in nuclear power plants. Glass fiber is widely adopted as a substitute for asbestos classified as a carcinogen. The insulations used in nuclear power plants are classified as radioactive waste and most of the insulation is Very Low-Level Waste (VLLW). It is packaged in a 200 L drum the same as a Dry Active Waste (DAW). In the case of the insulations, it is packaged in a vinyl bag and then charged into the drum for securing additional safety because of the fine particle size of the fiberglass. A safety assessment of the disposal facility should be considered to dispose of radioactive waste. As a result of analyzing overseas Waste Acceptance Criteria (WAC), there is no case that has a separate limitation for glass fiber. Also, in order to confirm that glass fibers can be treated in the same manner as DAW, research related to the diffusion of glass fibers into the environment was conducted in this paper. It was confirmed that the glass fiber was precipitated due to the low flow velocity of groundwater in the Gyeongju radioactive waste repository and did not spread to the surrounding environment due to the effect of the engineering barrier. Therefore, the glass fiber has no special issue and can be treated in the same way as a DAW. In addition, it can be disposed of in the disposal facility by securing sufficient radiological safety as VLLW.
        117.
        2022.10 구독 인증기관·개인회원 무료
        KHNP-CRI has developed Mega-Watt Class PTM (Plasma Torch Melter) for the purpose of reducing the volume of radioactive waste and immobilizing or solidifying radioactive materials. About 1 MW PTM is a treatment technology that operates a plasma torch and puts drum-shaped waste into a melter and radioactive waste in the form of slag is discharged into a waste container. Since only the overflowing slag is discharged from the melter, the discharge is intermittent. Therefore, solidification occurs in the process of discharging the melt. It is difficult to accumulate evenly in the waste container, and there is also an empty space. Solid radioactive waste must be disposed of to meet the acceptance criteria for radioactive waste. Plasma-treated solid waste raised concerns about the requirements. The waste solidification output in a slag container gave us some concerns for the waste package’s solidification and encapsulation requirements. The plasma-treated solid waste process to meet the acceptance criteria will be cost and need time consuming. Thus, a induction heating will be introduced to meet solidification requirements and test criteria of the solidification waste for the waste package disposal.
        118.
        2022.10 구독 인증기관·개인회원 무료
        We developed a 100 kW Class Transferred Type Plasma Torch applicable for melting of noncombustible metal wastes. By employing reverse polarity discharge structures for hollow electrode plasma torch, a transferred type arc plasma was generated stably with long arc length higher than 10 cm at the arc currents of ~400 A and gas (N2) flow rate of ~50 lpm. High arc currents and high arc voltages caused by the increased arc length could input high power level of ~100 kW to the noncombustible metal wastes, enabling quick melting. In addition, relatively long arc length and low gas flow rates can help reduce the deposition of melted materials on the exit surface of the torch. Thanks to these features, the developed plasma torch is expected to be suitable for small-scaled and portable melting system.
        119.
        2022.10 구독 인증기관·개인회원 무료
        Strong acidic wastewater containing a radionuclide is generated from the decontamination of radioactively contaminated wastes or equipment. This wastewater is generally treated though a precipitation process using an alkali (alkali earth) hydroxides. In this precipitation process, a significant amount of alkali (alkali earth) sulfates are generated, which is the reason for the increase in the radioactive waste generation. In this study, a method for separating only radionuclides and metal ions from the wastewater was evaluated. For this reason, precipitation behaviors of radionuclides and metal ions by hydrazine injections were investigated using equilibrium calculations. In addition, behaviors of hydrazine decomposition after removal of radionuclides and metal ions were analyzed for recycling the wastewater.
        120.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive waste is classified into Intermediate level, low level, and very low potential based on the amount of radioactivity per unit gram, that is, the concentration limit. This method of classifying radioactivity per unit weight is not a problem if all packaged wastes are homogeneous. However, the reality is that not all waste is homogeneous. Relative hotspots may exist. Also, when several items are mixed, if one item has a relatively higher concentration than other items, it can become a relative hotspot. In Korea, even if all nuclides in a single radioactive waste package satisfy the low level concentration limit, if even one nuclide exceeds the concentration limit, the radioactive waste package becomes the intermediate level. In case of the United States, the US NRC provides regulations related to obtaining license as well as presents the technical position on the average waste concentration called Concentration Averaging and Encapsulation Branch Technical Position (CA BTP). CA BTP classifies waste into four types : Blendable Waste, Encapsulated items, Single Discrete Items, and Mixture of Discrete Items, and presents each approach to concentration averaging. In general, this is a method that suggests an acceptable ratio in case of the waste, which relatively high concentration waste is mixed. In order to apply this in Korea, we compare the classification standards for low and Intermediatelevel waste in Korea and the United States, related laws and backgrounds, and the application methods of CA BTP.