검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 404

        121.
        2015.11 서비스 종료(열람 제한)
        우리나라는 국토의 약 64%가 산림으로 구성되어 있으며, 2011년 기준 국내 산림면적은 6,443천ha이다. 산림청 자료에 따르면 국내 산림 바이오매스 발생량은 총 704만 ㎥으로 발생량 중 약 45%인 319만㎥이 제재목, 펄프, 보드용, 축산깔개, 버섯재배, 열병합 발전 등에 이용된 것으로 추정된다. 발생량의 55%인 385 만㎥는 현재에도 미이용 상태로서 이러한 산림 바이오매스 에너지의 이용을 위한 경제성과 효율성 확보를 위한 기술 개발이 시급한 실정이다. 바이오매스를 에너지로 변화하는 열화학적 변환 공정은 연소, 가스화, 급속 열분해 공정이 있으며, 이중 급속열분해 공정은 산소가 없는 조건하에서 500℃ 내외의 고온에서 짧은 시간 동안 반응시킨 후 연료로 전환하는 공정이다. 급속열분해 과정을 거치면 바이오매스는 분자 간 결합뿐만 아니라 C-C 결합, C-O 결합의 해체 등 화학적 전환이 일어나게 되며 최종적으로 액상 연료인 바이오 오일과 고형분인 바이오탄, 가스형태의 비응축성 가스를 생성한다. 바이오 오일은 보일러․터빈 등 발전용 연료뿐만 아니라 수송용 연료와 화학소재 등으로 활용이 가능한 잠재력을 갖고 있다. 따라서 공정 후 최종 생성물의 수율을 최적화하는 것은 공정의 효율성과 바이오 오일의 활용 가능성을 높이는데 중요한 역할을 한다. 더불어 바이오 오일의 물리적․화학적 특성을 분석함으로써 연료로서의 특성을 평가하고 소재화 활용 방안을 구축할 뿐만 아니라 더 나아가 화석연료를 대체할 에너지원으로써의 가치 및 발전 가능성을 가늠할 수 있다. 바이오 오일의 수율과 물리적․화학적 특성에 영향을 미치는 요인으로는 크게 공정 조건과 원료 조건으로 나눌 수 있다. 공정 조건은 반응온도, 반응기내 체류시간이 있으며 원료 조건은 바이오매스 함수율, 입자 크기, 바이오매스 내 화학 조성 등이 있다. 본 연구에서는 공정조건, 원료 조건 변화에 따른 바이오 오일의 물리적․화학적 특성을 연구하기 위하여 분사층 급속열분해 실험장치를 이용하여 폐목재 톱밥 급속열분해 실험을 수행하였다. 급속열분해 실험은 공정 조건인 반응온도, 체류시간, 투입속도와 원료 조건인 바이오매스 입자 크기를 각각 변화하며 실험을 수행하였으며, 각 조건에서 생산된 바이오 오일의 원소분석, 발열량, 수분함량, 점도, pH, GC-MS 분석을 수행하였다. 그리고 실험 결과를 바탕으로 바이오 오일의 연료적 특성 평가 및 화학소재 활용 방안에 대하여 고찰하였다.
        122.
        2015.11 서비스 종료(열람 제한)
        전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 현재 화석연료의 의존도가 높으나, 화석연료의 가격의 변동이 심하고, 한정된 매장량을 지니며, 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미친다. 바이오매스 및 폐기물을 에너지원으로 하여 에너지를 생산하는 분야는 최근 각광받는 신・재생 에너지 분야 중 하나이다. 바이오 에너지는 바이오매스로부터 전환된 바이오 에너지를 사용할 때 발생되는 이산화탄소가 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 최근까지 옥수수, 사탕수수 등의 식량자원을 에너지원으로 사용하였지만 이러한 식량자원의 사용은 국제 곡물가 폭등 및 후진국의 식량파동을 야기하므로 비 식량에너지 작물개발에 대한 연구가 활발히 진행되고 있다. 이러한 비 식량 바이오매스에 대한 연구의 일환으로 농촌진흥청 국립식량과학원에서 거대억새를 개발하였다. 거대억새는 국내에 자생하는 물억새의 일종으로 염색체수가 76개로 4배체이며 기존 물억새 대비 크기와 굵기가 2배 이상이기 때문에 수확량은 약 30 ton/ha 로 1.5배 가량 높다. 또한 셀룰로오스 함량이 44%로 많고 회분이 1.6%로 적기 때문에 에너지자원으로써의 잠재성을 지니고 있다. 따라서 본 연구에서는 거대억새를 원료로 하여 bio-oil을 생산하는 연구를 진행하였다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 공정을 통하여 더욱 가치 있는 에너지의 형태로 변환될 수 있으며 그 중 급속열분해 공정은 무산소 분위기, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 유지하여 액상생성물인 bio-oil의 수율을 극대화 하는 공정이다. Bio-oil의 수율과 품질은 급속열분해 운전조건에 영향을 받으며 그 중 반응온도는 가장 영향을 많이 미치는 인자이다. 본 연구에서는 1kg/h 급 사각형 유동층반응기를 이용, 기포유동층 영역에서 400-550℃의 온도범위로 거대억새를 급속열분해 하였고, 생성된 bio-oil의 발열량, 수분함량, 점도, GC/MS 등의 분석을 통하여 특성 및 품질분석을 실시하였다. 또한 타 목본계, 초본계 바이오매스들과의 비교를 통하여 거대억새 bio-oil의 연료로써 가치평가도 함께 실시하였다.
        123.
        2015.11 서비스 종료(열람 제한)
        산업화/도시화에 의해 물 사용량이 증가하여, 하수 및 폐수 처리 후 부산물로 발생하는 슬러지 또한 매년 증가하고 있다. 하지만 기존 처리방식 중 비중이 큰 해양투기는 2012년부터 런던협약에 의해 금지됨으로써, 육상에서 슬러지 처리하기 위한 적절한 대책이 필요한 상태이지만, 매립이나 소각처리 방식은 2차 오염이 발생되므로 한계를 가지고 있어 새로운 방식이 요구되고 있다. 폐기물 에너지화 관점에서 슬러지 폐기물의 유기성 성분을 오일과 가연성 가스로 전화하는 열분해 기술에 대한 연구가 많이 진행되고 있다. 따라서, 하수슬러지 열분해 특성을 파악하기 위하여 탈수슬러지와 건조슬러지의 열분해 특성을 파악하고자 한다. 슬러지 열분해 실험을 위한 실험 장치를 열분해로, 가스 및 냉각수 라인, 가스와 타르 포집 및 분석라인으로 구성된다. 열분해로는 반응관, 전기로, 전기로 콘트롤러(Model UP35A, Yokogawa), 가스 배출 관으로 구성하였다. 하수처리장에서 발생되는 슬러지의 열적 특성 파악하기 위해서 Ar 분위기 하에서 10℃/min 온도 증가율에서 측정한 TG-DTA 결과를 Fig. 1에 나타내었다. 하수슬러지는 상온에서 200℃ 이하에서는 수분 증발에 의한 무게감량이 일어나고, 그 이후부터 탈휘구간이 형성된다. 200℃ ~ 400℃에서 급격한 무게감량이 보이며, 약 600℃까지의 무게감량은 유기물의 열분해에 의한 것이며, 600℃ 이상에서는 무기물 열분해에 의한 것이다. 하수슬러지 열분해 시 생성되는 타르, 가스, 촤의 중량비를 Fig. 2에 나타내었다.
        124.
        2015.11 서비스 종료(열람 제한)
        2012년부터 런던협약에 의해 유기성 슬러지의 해양투기가 전면금지됨에 따라 슬러지 감량화 및 자원화에 대한 연구개발이 시급한 실정이다. 전 세계적으로 하수슬러지의 처리 및 재활용 방법이 활발히 연구되어지고 있으나, 경제적 방법에 대한 연구는 아직 미흡하다. 전통적인 탈수와 건조방법은 슬러지의 특성으로 인하여 경제성이 떨어지는 문제점을 가지고 있다. 따라서, 건조 공정에서 소비되는 에너지를 줄이기 위한 효율적인 처리방안으로 열처리에 의한 가수분해 연구가 활발히 진행되고 있다. 본 연구에서는 열가수분해 공정을 적용하여 80% 이상 높은 함수율을 가진 하수슬러지를 고형연료 및 바이오가스로 회수하고자 한다.
        125.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Fast pyrolysis is one of the most viable and commonly used thermochemical conversion technologies which can be applied to both fossil-based and bio-based wastes. The conical spouted bed reactor is an alternative to fluidized beds and has been proven to be a versatile reactor for waste biomass fast pyrolysis, which allows obtaining high bio-oil yields because of its high heat and mass transfer rates and very short residence times. Understanding of the stable hydrodynamic operation range of the conical spouted bed is important for operation of fast pyrolysis reactor. This study characterizes the hydrodynamics of conical spouted bed using the analysis of pressure fluctuation signals. Stable hydrodynamic operation rages were identified by evaluation of pressure drop curve and FFT analysis. The stable operation range of a conical spouted bed was maintained while dominant frequency is 10 Hz. This appears to be promising cost-effective tool for precess control especially in fast pyrolysis systems.
        126.
        2015.05 서비스 종료(열람 제한)
        농업 및 임업 부산물로부터 발생되는 폐바이오매스를 에너지 자원으로 전환하는 공정인 급속열분해 공정은 폐바이오매스를 무산소 조건에서 500℃ 정도의 온도와 1~2초 이내의 짧은 시간 동안 반응시킨 후 액상 연료로 변환하는 공정이다. 급속열분해 공정을 통해 생산되는 액상 연료인 바이오 오일은 발전용, 수송용 연료로 사용될 수 있으며, 화학소재 등으로 활용이 가능하기 때문에 많은 연구가 진행되고 있다. 급속 열분해 반응기는 급속열분해 공정의 핵심이라 할 수 있으며, 반응기 종류 및 공정조건에 따라 급속열분해 생성물의 특성이 변화한다. 현재 개발된 반응기는 기포 유동층, 순환유동층, spouted bed, rotating cone, ablative, anger, vacuum moving bed 형태의 반응기가 있다. 다양한 반응기 중 conical spouted bed 반응기는 열 및 물질전달이 타 반응기에 비하여 우수하고, 유동층 반응기 보다 바이오매스의 입도가 큰 경우에도 운전이 가능하기 때문에 시료 분쇄에 소요되는 에너지를 절감할 수 있다. 또한 유동층 반응기와 동일한 처리 용량일 경우 반응기 체적이 작고, 분산판이 필요하지 않기 때문에 반응기 제작 비용 및 압력강하로 인한 에너지 손실 및 운전비용을 절감할 수 있으며, diluted spouted bed regime 에서는 반응기 내 열분해 생성물의 체류시간이 짧기 때문에 바이오 오일의 수율이 유동층 반응기 보다 높은 장점이 있다. 이러한 conical spouted bed의 여러 장점 때문에 최근 conical spouted bed를 이용한 급속열분해 연구가 소수 연구자들에 의해 연구되고 있지만, 폐바이오매스의 급속열분해 특성에 대한 연구는 미진한 상태이다. 바이오 오일의 수율 및 특성은 반응기 운전조건에 영향을 받기 때문에 conical spouted bed 급속열분해 반응기의 최적 운전조건 도출 및 안정적인 운전을 위해서는 반응기 내 폐바이오매스의 급속열분해 특성에 대한 연구가 필요하다. 본 연구에서는 conical spouted bed 급속열분해 실험장치를 이용하여 반응기 운전조건에 따른 폐바이오매스의 급속열분해 특성을 연구하였다. 연구를 통하여 공탑속도.유동사 입자 크기, bed 높이 변화에 따른 열분해 생성물의 수율 및 물리-화학적 특성을 분석하여 최적 운전 조건을 도출하였다.
        127.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        Refuse plastic fuel (RPF) as materials for the recycling processes (Materiel Recycling) present difficulties with the mixing, the demolishing, the molding and the drying steps. While using RDF as a fuel by pyrolysis, accompanying tar and soot causes many problems like clogging, the corrosion and the erosion of the chloride channel. Using the intermittent pyrolysis equipment during the decomposition of the RPF gases H2, CH4, CO and among the by-products of Cl2 and HCl, Tar is produced in a large quantity. With understanding the by-products decomposition system of the Cl2, H2, Tar and the gases H2, CH4, CO we can understand the nature of the generation of the products. The experimental conditions were chosen according to the temperature of the decomposition (300 ~ 900oC), While varying RPF 2 g, pyrolysis temperature 700oC during a holding time of 32 min : the H2 gas 1.71%, CH4 2.54%, CO 4.63%, Cl2 12.86 ppm, HCl 30.2 ppm were composed. Also light tar benzene 18.45 g/m3, naphthalene 0.86 g/m3, anthracene 0.09 g/m3, pyrene 0.04 g/m3, gravimetric tar 31.8 g/m3, and char 0.45 g was formed.
        128.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        This paper attempted to elucidate pyrolysis reaction characteristics of waste paper laminated phenolic-printed circuit board (p-PCB). Thermogravimetric analysis was performed for the pyrolysis kinetic analysis of waste p-PCB and Pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) was also employed to analyze the product distribution of waste p-PCB pyrolysis reaction under isothermal condition (230, 350, 600oC). Kinetic analysis and isothermal Py-GC/MS results showed that the pyrolysis reaction of waste p-PCB has three reaction temperature regions: 1) low temperature decomposition region (< 280oC), 2) medium temperature decomposition region (280 ~ 380oC), 3) high temperature decomposition region (> 380oC). At the first region, triphenyl phosphate used as fire retardant, water, and phenol were vaporized. At the second region, phenolic resin, tetrabromobisphenol-A (TBBA), and laminated paper are decomposed and produce phenols, brominated compounds, and levoglucosan which were the specific pyrolysis reaction products of phenolic resin, TBBA, and laminated paper, respectively. In the final region, cresol and alkyl benzene were detected which can be considered as the decomposition products of phenolic resin. By above results, pyrolysis reaction pathway of waste p-PCB is accounted for a series reaction with four independent reactions of phosphate based frame retardant, TBBA, laminated paper, and phenolic resin.
        129.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Waste heavy oil sludge is considered oil waste that can be utilized as a renewable energy source. In this study, an attempt has been made to convert the mixtures of waste heavy oil sludge and sawdust into solid biomass fuels. The solid fuel pellets from waste heavy oil sludge and sawdust could be manufactured only with a press type pelletizer. The mixing ratios of waste heavy oil sludge and sawdust capable of manufacturing a solid fuel pellet were 30 : 70, 40 : 60 and 50 : 50. Ultimate analysis result revealed that these mixtures had C 50.21 ~ 54.77%, H 10.25 ~ 12.66%, O 25.84 ~ 34.83%, N 1.01 ~ 1.04%, S 1.03 ~ 1.07%. With increasing the mixing ratio of waste heavy oil sludge, the carbon and hydrogen content in solid fuel pellets were increased, while the oxygen content was decreased. But the nitrogen and sulfur content in solid fuel pellets did not show much difference. Their lower heating values ranged from 4,780 kg/kcal to 5,530 kg/kcal. The density of the solid fuel pellets was increased from 0.63 g/cm3 to 0.85 g/cm3 with increasing the mixing ratio of waste heavy oil sludge and the collapse of the solid fuel pellets occurred at a moisture content of 21%. As the mixing ratio of waste heavy oil sludge in the solid fuel pellets was increased, the reaction of thermal cracking became faster. It was also observed that the solid fuel pellets were thermally decomposed in two steps and their DTG curves were simpler with increasing the mixing ratio of waste heavy oil sludge. The activation energy and the pre-exponential factor of the solid fuel pellets ranged from 18.90 kcal/mol to 21.36 kcal/mol and from 201 l/sec to 8,793 l/sec, respectively. They were increased with increasing the mixing ratio of waste heavy oil sludge.
        130.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        This paper estimated the Arrhenius parameters as well as the pyrolysis reaction model for epoxy printed circuit boards (e-PCB) by analyzing isothermal kinetic data. This paper introduces the use of thermobalance that is capable of monitoring a weight decrease with time under pure static condition. Three isothermal kinetic experiments were performed at 270, 275 and 280oC, that were chosen within a temperature range where main decompositions were observed from nonisothermal kinetic results. Comparing experimental reduced-time-plot (RTP) with theoretical ones, the pyrolysis reaction model of e-PCB fitted best to the Avrami-Erofeev (A2) Model. Consequently, the activation energy and pre-exponential factor were then estimated to be 141 kJ⋅mol−1and 29.9 (lnA, A : min−1), respectively.
        131.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        In this study, activation energy of lignite, RPF and a sample mixed both of them was obtained through kinetics characteristics analysis in pyrolysis in order to identify the applicability of RPF as an assistant fuel. TGA (Thermogravimetric analysis) was conducted with follow experimental conditions; in a nitrogen atmosphere, gas flow rate of 20 ml/min, heating rate of 5 ~ 50oC/min, and maximum hottest temperature of 800oC. As a result of TGA, it showed that pyrolysis of samples mixed with 20% and 10% of RPF were more stable than other mixed ratio, and 20% of RPF was the most similar with lignite in activation energy.
        132.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        The large amount of waste oil sludge was generated from waste oil purification process, oil bunker, or the ocean plant. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste oil sludge fuel) as a renewable energy source was estimated. For manufacturing a BOF, a press type pelletizing was better than an extruder type and also 40 ~ 60% of mixing ratio in waste oil sludge was appropriate to produce a pellet. The pellet was 13 mm in diameter and 20 mm in length. There was no fixed carbon in waste oil sludge, and its carbon content and higher heating value were 63.90% and 9,110 kcal/kg, respectively. With an increse of mixing ratio of sawdust, the carbon content and heating value of the BOF were dropped, but fixed carbon content was increased. The heating value of BOF was in the range of 6,400 ~ 7,970 kcal/kg at the mixing ratio of 40 ~ 60% in waste oil sludge. It means that the BOF can be classified as the 1stgrade solid fuel. In TGA experiment carried out at heating rate of 10oC/min and under nitrogen atmosphere, thermal decomposition of sawdust was occurred in two steps, but waste oil sludge was destructed in one step. The initiated cracking temperature of sawdust and waste oil sludge was 300 and 280oC in respective and after 450oC the thermal decomposition process of sawdust was slowly progressed by 800oC in contrast to waste oil sludge. Thermal decomposition of waste oil sludge was finished around 600oC. It can be considered that this difference is due to the fixed carbon content. Thermal decomposition pattern for the pellet of mixing ratio over 50% in waste oil sludge was similar to that for waste oil sludge and thermal cracking was occurred between 300 and 350oC. As the mixing ratio of waste oil sludge in the pellet increased, the reaction of thermal cracking became fast.
        133.
        2014.11 서비스 종료(열람 제한)
        인쇄회로기판 폐기물의 발생량은 꾸준히 증가하고 있으며, 구리 등 고가 금속을 함유하고 있어 적절한 재활용 방법의 적용이 시급한 상황이며, 그 대안으로서 열분해가 주목을 받고 있다. 본 연구에서는 페놀 인쇄회로기판(Phenol Printed Circuit Board, p-PCB) 폐기물의 열분해 특성을 규명하여 p-PCB 폐기물 열분해 공정 설계에 기초 자료를 제공하는데 그 목적을 두고 있다. 이를 위해 열중량분석기(Thermogravimetric analyzer; TGA)를 통한 동역학 분석과 더불어 부산물 특성 파악을 위해 Py-GC/MS(Pyrolyzer-Gas Chromatography/Mass Spectrometry, Py-GC/MS)를 적용하였다. 동역학분석과 휘발가스분석(Evolved Gas Analysis, EGA)을 통하여 p-PCB 열분해 반응은 크게 3 단계로 구분할 수 있다. 첫 번째 단계는, 280℃ 이하에서 반응이 일어나며, 초기질량의 10%로 감소하는 구간으로 미경화된 페놀 성분의 휘발과 열적으로 불안정한 물질들이 분해 배출된다고 여겨진다. 두 번째 단계는 280℃~380℃ 구간으로 초기 질량의 60%가 분해되는 구간으로서 주로 p-PCB를 구성하고 있는 종이와 경화된 브롬화(Brominated) 페놀수지의 분해로 판단된다. 마지막 분해구간인 380℃ 이상에서는 비브롬화(Non-Brominated) 페놀수지의 분해 및 촤(Char) 형성 단계로 판단된다. p-PCB의 열분해는 브롬화 페놀수지의 생성으로 특성지울 수 있으며, 열분해를 통해 페놀수지의 추출 재활용 가능성을 시사하고 있다.
        134.
        2014.11 서비스 종료(열람 제한)
        열경화성수지는 저분자의 중합체를 가열하면 중합도가 증가하여 큰 힘을 가해도 변형하지 않는 성질을 이용한 것으로, 분자 내에 3개 이상의 반응기를 가진 비교적 저분자량의 물질로 이루어져 있다. 일반적으로 내열성, 내용제성, 내약품성, 전기절연성 등이 좋으며, 충전제를 넣어 강인한 성형물을 만들 수도 있다. 열경화성수지는 축중합형과 첨가중합형으로 나뉘는데 축중합형에서는 페놀수지, 요소수지, 멜라민수지 등이 있으며, 첨가중합형에는 에폭시수지, 폴리에스터수지 등이 있다. 열경화성수지 중 열분해가 용이한 폴리우레탄수지(PU)와 에폭시수지(EP)에 대한 사전연구를 진행한 결과 두 수지 모두 수분함량이 거의 없어 전처리 없이 바로 열분해가 가능할 것으로 판단되었다. 또한 폴리우레탄수지는 휘발분이 90% 이상을 나타내고 있어 회분이 거의 없는 반면, 에폭시수지는 휘발분과 회분이 각각 약 45% 정도로 구성되어 있는 것을 확인하였다. 원소분석 결과는 일반적인 플라스틱과 다르게 질소(N)와 산소(O)가 존재하고 특히 산소의 함량이 높은 것을 확인할 수 있었으며, 황(S) 성분은 전혀 측정되지 않았다. 또한 폴리우레탄수지의 평균 발열량은 7098.57kcal/kg, 에폭시수지의 평균 발열량은 3612.20kcal/kg 정도로 일반적인 열가소성수지의 발열량보다는 낮은 것을 확인하였다. 마지막으로 Batch 형태의 열분해 반응기를 통해 400, 500, 600℃의 반응온도에서 승온율 5℃/min, 반응시간 60분으로 열분해반응을 통해 얻어지는 반응생성물의 수율을 조사하였다. 폴리우레탄수지의 경우 액체생성물의 수율에는 거의 변화가 없는 반면, 반응온도가 증가할수록 고체생성물의 수율은 감소하는 동시에 기체생성물의 수율은 증가되는 것을 확인하였으며, 에폭시수지의 경우 고체생성물의 수율은 약 65%를 나타내고 액체와 기체생성물의 수율에는 큰 변화가 없는 것으로 확인되었다. 따라서 본 연구에서는 사전연구결과를 토대로 폐에폭시수지를 대상으로 장치를 Scale-up하여 현장에 설치한 후 운전조건을 확립하고, 발생 및 수요기업 간 네트워트 구축을 통해 폐열경화수지를 열분해하여 고기능성 탄소원을 회수하는 설비를 사업화할 수 있는 기틀을 마련하고자 하였다.
        135.
        2014.11 서비스 종료(열람 제한)
        신재생에너지의 종류에는 수소에너지, IGCC, 연료전지, 바이오에너지 등 여러 종류가 있지만, 기존의 화석연료를 대체할 수 있는 에너지는 바이오매스가 유일하다. 바이오매스는 광합성 과정을 통해 체내 이산화탄소를 축적하므로 대기 중의 이산화탄소 농도를 변화시키지 않아 기후변화 완화에 기여를 하고 있다. 바이오오일은 수송용 연료로 사용이 가능하고 그 외에 다양한 화학물질들이 존재하여 화학시장의 새로운 플랫폼이 될 수 있는 자원으로 인식되고 있다. 바이오오일을 만드는 방법은 여러 가지가 있지만 열분해는 가장 간단하면서도 다양한 물질이 생성되어 그 활용가치가 매우 높다. 열분해 후에는 바이오촤, 바이오 오일, 바이오가스가 생성되는데 이번 연구에서는 바이오 촤와 바이오 오일의 분석에 집중하였다. 생성된 바이오오일은 탄화수소 계열 화학물질 외에 다양한 유기화합물이 존재하는데 화학산업의 기초가 되는 유기물질들이 다량 존재한다. 바이오촤는 활성탄으로 사용이 가능하고 석탄을 대체할 연료로 고려되고 있는 단계로 가치가 높게 받아들여지고 있다. 본 연구에서는 목재 펠릿 제조 후 남는 폐 톱밥을 이용하였고 화학 처리는 되지 않았다. ZSM-5 촉매를 사용하여 열분해를 진행하였고, Si/Al ratio가 다른 촉매를 이용하여 최적의 촉매와 조건을 찾아내었다. 촉매와 폐톱밥을 균질하게 섞어 촉매 반응이 원활하게 진행되도록 유도하였고 생성되는 바이오촤와 바이오 오일에 촉매의 영향이 있는지 확인하였다. 대조군으로 무촉매 조건을 두었는데 이 때 온도는 350, 400, 450, 500, 550℃로 변화를 주며 실험을 진행하였다. 촉매 조건에서는 400, 500℃로 실험을 진행하였다. 열분해하여 나오는 생성물을 성상별로 분류하여 고체와 액체 물질이 어느 촉매 조건에서 많이 나오는지 비교하였다. 바이오 촤는 질량비교와 원소분석을 이용하여 분석하였고 바이오 오일은 질량 비교와 GC-MS를 이용하여 분석하였다.
        136.
        2014.11 서비스 종료(열람 제한)
        팜 오일 산업에서 fresh fruit bunch(이하 FFB)는 팜 오일을 만드는데 사용되며, 오일 생산 과정에서 부산물인 empty fruit bunch(이하 EFB)가 약 20 wt. %이상 배출된다고 보고되고 있다. 한편, 우리나라는 신・재생에너지 공급 의무화 제도에 따라 신・재생에너지원의 확보와 이에 대응할 수 있는 기술개발이 필요한 실정이다. 따라서, EFB를 바이오매스로써 활용한다면 신・재생에너지원 확보와 청정기술개발에 이바지 할 수 있을 것으로 기대된다. 그러나 EFB는 배출방식에 의해 회분 함량이 높고, 문헌에 따르면 이는 균질한 바이오오일을 생산하고 열화학공정에서의 효율을 증가시키기 위해 제거해야 한다고 제안한다. 또한, 바이오매스에 함유된 알칼리 금속은 바이오 오일의 품질에 악영향을 미친다고 보고된 바 있다. 따라서, 본 연구에서는 EFB를 일반 수돗물, 증류수와 질산용액(0.1 wt. %)을 이용하여 세척한 후, 공업분석과 ICP분석을 통해 회분과 알칼리금속의 제거효과를 정량화 하고자 하였다. 세척한 EFB는 24시간 건조 후에 공업분석으로부터 회분의 함량변화를 분석하였고, ICP 분석을 통해 EFB와 세척한 EFB들 간에 알칼리금속 함량도 비교・분석하였다. 비교 결과, 회분은 5.9 wt. %에서 1.53 wt. %로 감소하였고, 알칼리금속은 총 양의 80% 이상 제거되었다. 경제적 효율성을 고려하여 일반 수돗물(1일)과 질산용액(2일)으로 처리한 EFB를 실험에 이용하였다. 열분해실험 결과, 일반 수돗물로 세척한 EFB를 500℃ 조건에서 실험했을 때 가장 높은 수율(48 wt. %)을 얻을 수 있었다. 추가로, 바이오 오일의 특성변화를 확인하기 위해 GC-MS 분석, 원소분석, 디지털 현미경으로 균질성 분석을 수행하였다.
        137.
        2014.11 서비스 종료(열람 제한)
        본 연구에서는 폐바이오매스 급속열분해 공정해석을 통하여 반응온도에 따른 바이오오일의 수율을 살펴보고 급속열분해 반응모사를 위해 적용된 반응 메커니즘을 평가하였다. 폐바이오매스 급속열분해 공정은 바이오매스 투입기, 급속열분해 반응기, 사이클론, 응축기 그리고 전기집진기 등으로 구성되어있다. 공정 내 각각의 장치들은 온도, 질량분율 등의 함수로 모델링되어있다. 특히, 본 공정해석에 적용된 급속열분해 반응 메커니즘은 폐바이오매스의 주요 성분들인 셀룰로오스, 헤미셀룰로오스 그리고 리그닌의 함수로 이루워져있다. 즉, 여러 가지 폐바이오매스 특성에 따른 차이를 모사할 수 있다. 따라서 본 연구에서는 억새, beechwood, switchgrass 총 3종의 폐바이오매스를 이용하여 공정해석을 수행하였다. 온도에 따른 바이오오일의 수율은 모든 폐바이오매스에서 반응온도가 증가함에 따라 증가하다가 최대 바이오오일 수율을 갖고 감소하는 경향을 나타낸다. 비응축가스의 수율은 온도가 증가함에 따라 증가하며, 촤의 수율은 감소한다. 해석된 결과들의 경향은 일반적인 급속열분해 실험결과와 일치하는 것을 확인할 수 있었다. 폐바이오매스 종류에 따른 바이오오일 수율은 억새나 switchgrass보다 밀도가 높은 beechwood에서 가장 큰 수율을 가진 것을 확인할 수 있었으며, 해석된 결과를 실험결과와 비교/평가를 하였다.
        138.
        2014.11 서비스 종료(열람 제한)
        하・폐수 슬러지는 퇴비화, 소각, 해양투기, 매립, 건조 에너지화 등 다양한 방법을 통해 처리하였으나,해양배출 금지, 환경 문제 등으로 인해 처리상 어려움이 있다. 하・폐수 슬러지는 건조화 방식을 통해 고형연료로 변환이 가능하며, 이는 신재생에너지로 활용하여 열적 변환을 통해 에너지를 생산과 동시에 효율적으로 처리할 수 있다. 건조된 하・폐수 슬러지는 저위발열량 12-15 MJ/kg, 회분함량 20~30% 로써 열적 변환 방식에 따라 전・혼소용 연료로 충분한 활용이 가능하다. 따라서 본 연구에서는 건조/고형 슬러지를 대상으로 열중량분석, 열분해, 연소를 통해 연료 특성에 대해 파악하였다. 건조/고형화 슬러지는 산업폐수를 활용하여 열수 건조 후 성형된 고형 연료로써 수분은 5.73%로 나타났다. 회분의 함량은 36.27%, 가연분 함량(휘발분+고정탄소)는 58.0%, 저위발열량 14.28 MJ/kg 이다. 열중량분석은 약 10 mg의 미량의 샘플을 사용하여, 질소분위기에서 800℃까지 5-50℃/min으로 승온율에 따른 무게감소량 등 연료 특성에 대해 분석하였다. 전반적으로 약 100℃ 내외에서 수분이 증발되며, 250-520℃에서 열분해가 진행되는 것을 확인할 수 있었고, 승온율이 증가할수록 열분해 시 온도에 따른 무게감소량이 점점 감소하였다. 슬러지의 저속 열분해는 직경 100 mm, 높이 300 mm의 고정층 반응기를 통해 550℃까지 50℃/min 으로 승온하여 열분해 후 생성된 촤,타르와 합성가스의 양과 조성을 분석하였다. 열분해를 통해 생성된 Tar는 원소 조성을 파악하여 Tar내의 다양한 조성을 측정하였다. 생성된 가스는 연소실험과 동일한 방법을 통해 가스조성, 발열량 등을 파악하였다. 이를 통해 가스화, 연소 모델 개발에 활동 가능한 기초자료를 도출하였다. 건조/고형 슬러지의 연소 특성 실험은 직경 310 mm, 높이 720 mm의 Lab-scale 고정층 반응기를 사용하여 공기유량 100-400 L/min(97-390kg/m2hr)의 범위에 대해 수행해였다. 연소실험의 온도분포는 반응기 내부에서 5 cm 간격으로 설치된 열전대를 통해, 연료 무게 감소량은 로드셀을 통해 무게 감소량을 측정하였다. 이때 생성된 가스는 Online 가스분석기를 통해 CO, CO2, CH4, H2 를 분석하며, Micro-GC를 통해 CxHy 등을 일정 시간마다 분석하였다. 실험결과 해당 유량범위에서 슬러지 연소는 당량비가 1이하인 연료과잉 상태로써 유량이 증가할수록 화염면의 온도가 상승하며, 그 결과로 화염면 하단으로의 열전달이 증가하면서 화염 전파 속도가 증가하였다. 또한 촤의 느린 연소속도로 인해 화염면 상부에 누적되며 화염면이 화격자에 도달한 후 고온의 촤 연소 영역이 형성되었다. 측정된 온도와 가스 조성, 무게 감소 결과는 향후 연소모델 개발을 위한 기초자료로 활용할 수 있다.
        139.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        In this study those currently operating pyrolysis oil plant were selected for the investigation. The yield of the oil andfuel was assessed for its use as fuel and the char component analysis, and the reaction time to collect contaminantscollected and analyzed. As the result, about 40% of the oil was yielded and oil could be used as an alternative fuel. Char’sleaching test analysis result was satisfied with the landfill standard. And emission of Dioxin and pollutants was analyzed.The highest concentration of dioxin was 0.7347ng I-TEQ/Sm3. The result satisfied the requirement however the emissionconcentration was changed depending on the input Fuel. Therefore the appropriate pollution control facility should berequired.