We investigated on the additive effect of carbon nanotube in the sulfur electrode on the first discharge curve and cycling property of lithium/sulfur cell. The sulfur electrode with carbon nanotube had two discharge plateau potentials and the first discharge capacity about 1200 mAh/g sulfur. The addition carbon nanotube into the sulfur electrode did not affect the first discharge behavior, but improved the cycling property of lithium/sulfur cell. The optimum content of carbon nanotube was 6 wt% of sulfur electrode
The preparation of metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.
In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of Carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.
Carbon nanotube (CNT) reinforced hydroxyapatite (HAp) composites were fabricated by using the spark plasma sintering process with surfactant modified CNT and HAp nano powder. Without the dependency on sintering temperature, the main crystal phase existed with the HAp phase although a few contents of (Tri calcium phosphate) phase were detected. The maximum fracture toughness, was obtained in the sample sintered at and on the fracture surface a typical intergranular fracture mode, as well as the pull-out pmhenomenon of CNT, was observed.
Carbon nanotubes (CNTs) have attracted remarkable attention as reinforcement for composites owing to their outstanding mechanical properties. The CNT/Cu nanocomposite is fabricated by a novel fabrication process named molecular level process. The novel process for fabricating CNT/Cu composite powders involves suspending CNTs in a solvent by surface functionalization, mixing Cu ions with CNT suspension, drying, calcination and reduction. The molecular level process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The mechanical properties of CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows about 3 times higher strength and 2 times higher Young's modulus than those of Cu matrix.
탄소재료는 결정구조에 따라 카본블랙(carbon black), 그라파이트(graphite), 탄소섬유(carbon fiber) 등 다양한 형태가 있으며 그 응용 또한 광범위하다. 이는 탄소재료가 화학적으로 매우 안정하고, 열 및 전기전도성이 우수하며, 기계적인 특성면에서도 고강도, 고탄성율을 가지고 있어서 구조적으로 안정하기 때문이다. 특히 (fullerene)와 탄소나노튜브(carbon naotube : CNT)등 근래 새로이 발견된 탄소물질들 은 그
열CVD법에 의하여 아세틸렌 가스를 탄소 원으로 사용한 탄소 나노튜브의 성장거동을 조사하였다. 닉켈 분말의 직경을 15nm 내지 90nm 범위로 조정하여 기판 에 촉매로 배열하였다. 탄소 나노튜브는 질소, 수소, 알곤, 암모니아 등 여러가지의 가스 분위기에서 증착되었으며 이들 가스의 혼합 분위기가 탄소나 노튜브의 성장에 미치는 영향을 조사하였다. 증착은 대기압 압력하에서 85 의 온도에서 이루어졌다. 순수한 질소 분위기에서는 탄소 나노튜브의 성장이 이루
This research uses carbon nanotubes (CNTs) that are actively used to develop convenient and systematic management of building blocks and structural performance monitoring, away from the difficulties of structural health monitoring such as RC structures. The change in electrical resistance was evaluated according to the amount of load and compressive load. Experiments were carried out with 1.0% and 2.0% CNT, and 30% and 60% compressive strength, respectively. Experimental results show that the compressive strength of CNT 2.0% is lower than the compressive strength of CNT 1.0% but is more sensitive to changes in electrical resistance due to compressive load.
In this research, Sensing Performance in Tensile Strain of Strain-Hardening Cement Composites by Containing of Carbon nanotube have been studied. The ultimate strength and strain were improved with increasing in amounts of CNT, and fractional change in resistivity were improved when same tensile strain. and %LE were decreased with increasing in amounts of CNT.