검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 478

        121.
        2022.10 구독 인증기관·개인회원 무료
        In the case of decommissioning of a nuclear power plant, it is expected that a significant amount of VLLW and LLW that need to be disposed of are also expected. Conventional reduction technology is a method of extracting or removing radionuclides from waste, but this project is being carried out for the purpose of obtaining a reduction effect through the development of a material that treats another radioactive waste using radioactive waste. In this paper, the technology of impregnating LiOH capable of adsorbing radiocarbon to the gas filter material manufactured from concrete and soil waste as raw materials and the radiocarbon removal performance were reviewed. In this study, a raw material of ceramic filter was prepared by mixing concrete and soil waste with a powder of 40 m or less, and after sintering at 1,250°C, 5wt% to 40wt% of LiOH is impregnated with a filter capable of adsorbing carbon dioxide. was prepared. The prepared filter used ICP-OES and XRD to confirm the LiOH deposition result, and the concentration of carbon dioxide discharged through the carbon dioxide adsorption device was confirmed. It was possible to obtain the result that the amount of adsorption was changed depending on the flow rate of carbon dioxide supplied and the amount of material. Through this, it was possible to confirm the possibility of power generation in the adsorption performance of gas. In this study, after crushing waste concrete and waste soil, powders of 40 m or less were mixed with other additives to prepare raw materials for ceramic filters, and sintered at 1,250°C to manufacture filters. 5wt% to 40wt% of LiOH was impregnated on the prepared filter to give functionality to enable carbon dioxide adsorption. The results of LiOH deposition were confirmed using ICP-OES and XRD, and the change in the concentration of carbon dioxide emitted through a separately prepared adsorption device was confirmed. It was possible to obtain the result that the amount of adsorption was changed according to the flow rate of carbon dioxide supplied and the amount of material, and the possibility of developing a material for radioactive waste treatment using radioactive waste was confirmed when the porosity and specific surface area of the filter material were increased.
        122.
        2022.10 구독 인증기관·개인회원 무료
        There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
        123.
        2022.10 구독 인증기관·개인회원 무료
        The 2-round Delphi survey and Focus Group Interview (FGI) survey method, in this study, are sequentially applied for the level analysis of the high-level radioactive waste (HLW) management technologies, that are classified into transport/storage, site evaluation, and disposal categories. The 2- round Delphi survey was conducted on domestic 56 experts in the HLW field in Korea, and survey answers were managed with questionnaires distributed by e-mail. In the FGI survey, domestic 24 experts from management field were formed into three groups to conduct in-depth interviews. Past research achievements including journal papers, intellectual properties and the expert opinions presented at expert hearing on HLW technology were used as reference materials. As a result of the survey, in this study, the average domestic technology level compared to the leading countries was 83.1% in transport area, 79.6% in storage area, 62.2% in site evaluation area, and 57.4% in disposal area, respectively. When compared to the former level analysis results in 2017, technology level of transport-storage area increased by 8.6%, and the site evaluation-disposal technology area decreased by 7.27%. The highest factor that increase the level of technology in the transport-storage field was due to the increased R&D program resulting on journal papers, intellectual properties. In addition, the decrease factor in the level of technology in the site evaluation-disposal field was mainly due to relatively low R&D program when compared to the leading countries. Suggested method for the level survey can be used to find out the basic data of the lower tech technologies, to estimate the efficient research budgets and to prepare the R&D human resources. With this regards, R&D roadmap can be matured with suggested prediction method for the domestic technology level on HLW.
        124.
        2022.10 구독 인증기관·개인회원 무료
        Copper is used for deep geological disposal canisters of spent nuclear fuels, because of excellent corrosion resistance in an oxygen-free environment. However, sulfide formation during the long-term exposure under deep geological disposal condition can be harmful for the integrity of copper canisters. Sulfur around the canisters can diffuse along grain boundaries of copper, causing grain boundary embrittlement by the formation of copper sulfides at the grain boundaries. The development of copper alloys preventing the formation of copper sulfides along grain boundaries is essential for the longterm safety of copper canisters. In this research, the mechanisms of copper sulfide formation at the grain boundary are identified, and possible alloying elements to prevent the copper sulfide formation are searched through the first principle calculations of solute atom-vacancy binding energy and the molecular dynamics calculation of grain boundary segregation energy. The comparison with the experimental literature results on the mitigation of copper embrittlement confirmed that the theoretically identified mechanisms of copper sulfide formation and the selected alloy elements are valid. Thereafter, binary copper alloys were prepared by using a vacuum arc melting furnace. Sulfur was added during casting of the copper alloys to induce the sulfide formation. The cast alloys were cold-rolled into a plate after homogenization heat treatment. The microstructure and mechanical property of each alloy were investigated after recrystallization in a vacuum tube heat treatment furnace. The copper alloys developed in this study are expected to contribute in increasing the long-term safety of deep geological disposal copper canisters by reducing the embrittlement caused by the sulfide formation.
        125.
        2022.10 구독 인증기관·개인회원 무료
        The analysis of uranium migration is crucial for the accurate safety assessment of high-level radioactive waste (HLW) repository. Previous studies showed that the migration of the uranium can be affected by various physical and chemical processes, such as groundwater flow, heat transfer, sorption/ desorption and, precipitation/dissolution. Therefore, a coupled Thermal-Hydrological-Chemical (THC) model is required to accurately simulate the uranium migration near the HLW repository. In this study, COMSOL-PHREEQC coupled model was used to simulate the uranium migration. In the model, groundwater flow, heat transfer, and non-reactive solute transport were calculated by COMSOL, and geo-chemical reaction was calculated by PHREEQC. Sorption was primarily considered as geo-chemical reaction in the model, using the concept of two-site protolysis nonelctrostatic surface complexation and cation exchange (2 SP NE SC/CE). A modified operator splitting method was used to couple the results of COMSOL and PHREEQC. Three benchmarks were done to assess the accuracy of the model: 1) 1D transport and cation exchange model, 2) cesium transport in the column experiment done by Steefel et al. (2002), and 3) the batch sorption experiment done by Fernandes et al. (2012), and Bradbury and Baeyens (2009). Three benchmark results showed reliable matching with results from the previous studies. After the validation, uranium 1D transport simulation on arbitrary porewater condition was conducted. From the results, the evolution of the uranium front with sequentially saturating sites was observed. Due to the limitation of operator splitting method, time step effect was observed, which caused the uranium to sorbed at further sites then it should. For further study, 3 main tasks were proposed. First, precipitation/ dissolution will be added to the reaction part. Second, multiphase flow will be considered instead of single phase Darcy flow. Last, the effect of redox potential will be considered.
        126.
        2022.10 구독 인증기관·개인회원 무료
        The structural integrity of concrete silos is important from the perspective of long-term operation of radioactive waste repository. Recently, the application of acoustic emission (AE) is considered as a promising technology for the systematic real-time health monitoring of concrete-like brittle material. In this study, the characteristics of AE wave propagation through concrete silo of Gyeongju radioactive waste repository were evaluated under the effects of groundwater and temperature for the quantitative damage assessment. The attenuation coefficients and absolute energies of AE waves were measured for the temperature cases of 15, 45, 75°C under dry and saturated concrete specimens, which were manufactured based on the concrete mix same as that of Gyeongju concrete silo. The geometric spreading and material loss were taken into account with regard to the wave attenuation coefficient. The attenuation coefficient shows a decreasing pattern with temperature rise for both dry and saturated specimens. The AE waves in saturated condition attenuate faster than those in dry condition. It is found that the effect of water content has a greater impact on the wave attenuation than the temperature. The results from this study will be used as valuable information for estimating the quantitative damage at the location micro-cracks are generated rather than the AE sensor location.
        127.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning of nuclear-related facilities at the end of their design life generates various types of radioactive waste. Therefore, the research on appropriate disposal methods according to the form of radioactive waste is needed. This study is about the solidification of uranium contaminated soils that may occur on the site of nuclear facilities. A large amount of radioactively contaminated soil waste was generated during the decommissioning of the uranium conversion plant in KAERI, and research on the proper disposal of this waste has been actively conducted. Numerous minerals in the soil can become glass-ceramic through the phase change of minerals during the sintering process. This method is effective in reducing the volume of waste and the glassceramic waste form has excellent mechanical strength and leaching resistance. In this study, the optimum temperature and time conditions were established for the production of glass-ceramic sintered body of soil. The compressive strength and leachability of the sintered body made by applying the optimal conditions to simulated waste was confirmed. The basic physicochemical properties of simulated soil waste were identified by measuring the pH, moisture content, density, and organic matter content. The elemental compositions in the soil was confirmed by XRF. Soils were classified by particle size, and each sample was compressed with a pressure of 150 MPa or more to prepare a green body. Based on the TG-DSC analysis, an appropriate heating temperature was set (>1,000°C), and the green body was maintained in a muffle furnace for 2~6 hours. The optimal sintering conditions were selected by measuring the compressive strength and volume reduction efficiency of the sintered body for each condition. The difference between the green body and sintered body was observed by XRD and SEM. In the experiments for evaluation of additives, the selected chemical substances were mixed with the soil sample in a rotator. Based on the results of TG-DSC, sintered body was made at 850°C, and the compressive strength and volume reduction were compared. Based on the results, the most effective additive was determined, and the appropriate ratio of the additive was found by adjusting the range of 1~5 wt%. This study was confirmed that the sintered soil waste showed sufficient stability to meet the disposal criteria and effective volume reduction for final disposal.
        128.
        2022.10 구독 인증기관·개인회원 무료
        In a nuclear power plant, the activated corrosion products are deposited on the reactor coolant system. The activated corrosion products must be removed to reduce the radiation exposure to workers before maintaining or decommissioning of the nuclear power plant. In order to remove the remove the activated duplex oxide layer generated on the reactor coolant system in the pressurized water reactor (PWR), the Cyclic SP (Sulfuric acid/Permanganate)-HyBRID (Hydrazine Based Reductive metal Ion Decontamination) process developed by KAERI (Korea Atomic Energy Research Institute) can be used. After applying the Cyclic SP-HyBRID process, a sulfate-rich waste powder containing the radionuclide is generated, and the radioactive powder has to be stabilized for final disposal. In the previous study, it was confirmed that the low-temperature sintering method can be applied to immobilize the sulfate-rich waste powder. Thus, immobilization of the Cyclic SP-HyBRID process waste powder was carried out by the low-temperature sintering method using a low melting point glass, and the physicochemical and radiological characteristics of a waste form were evaluated in this study. As a result, the compressive strength of the waste form increased with increasing sintering temperature and sintering time. It is considered that the result was caused by the difference in the band gap between the bismuth borate and zinc borate, which are the products during the sintering process. It was verified that the physical stability was maintained after the 107 Gy of irradiation test. In addition, it was confirmed that the radioactive metal hydroxides contained in the waste powder converted to metal oxide forms, which have the lower solubility, at the sintering temperature. Finally, the waste form was evaluated as a low-level radioactive waste from the concentration of radionuclides contained in the waste form.
        129.
        2022.10 구독 인증기관·개인회원 무료
        Uranium-235, used in nuclear power generation, produces a lot of radioactive waste. Among radioactive waste nuclides, I-129 is problematic due to its long half-life (1.57×107 y) with high mobility in the environment. It should be captured and immobilized into a geological disposal environment through a stable waste form. In this study, various additives including Al, Bi, Pb, V, Mo and W were added to silver tellurite glass to prepare a matrix for immobilizing iodine, and its thermal and leaching properties were evaluated. To prepare glass, the glass precursor mixture was placed in alumina crucibles and heated at 800°C for 1 h. Except for aluminum, there was no significant loss of constituent elements. The loading of iodine in the matrix was approximately 11-15% by weigh, excluding oxygen. The normalized releases of all the elements obtained by PCT-A were below the order of 10-1 g/m2, which satisfies US regulation (2 g/m2). Differential scanning calorimetry was performed to evaluate the thermal properties of the glass samples. The glass transition temperature (Tg) increased by adding such as V2O5, MoO3, or WO3. The similar relative electrostatic field values of V2O5, MoO3, and WO3 could provide sufficient electro static field to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. The addition of MoO3 or WO3 in the silver tellurite glass system increased glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability.
        130.
        2022.10 구독 인증기관·개인회원 무료
        Glass fiber (GF) insulation is a non-combustible material, light, easy to transport/store, and has excellent thermal insulation performance, so it has been widely used in the piping of nuclear power plants. However, if the GF insulation is exposed to a high-temperature environment for a long period of time, there is a possibility that it may be crushed even with a small impact due to deterioration phenomenon and take the form of small particles. In fact, GF dust was generated in some of the insulation waste generated during the maintenance process. In the previous study, the disposal safety assessment of GF waste was performed under the abnormal condition of the disposal facility to calculate the radiation exposure dose of the public residing/ residents nearby facilities, and then the disposal safety of GF waste was verified by confirming that the exposure dose was less than the limit. However, the revised guidelines for safety assessment require the addition of exposure dose assessment of workers. Therefore, in this study, accident scenarios at disposal facilities were derived and the exposure dose to the workers during the accident was evaluated. The evaluation was carried out in the following order: (1) selection of accident scenario, (2) calculation of exposure dose, (3) comparison of evaluation results with dose limits, and confirmation of satisfaction. The representative accident scenarios with the highest risk among the facility accident were selected as; (a) the fire in the treatment facility, (b) the fire in the storage facility, and (c) fire after a collision of transport vehicles. The internal and external exposure doses of the worker by radioactive plume were calculated at 10m away from the accident point. In evaluation, the dose conversion factors ICRP-72 and FGR12 were used. As a result of the calculation, the exposure dose to workers was derived as about 0.08 mSv, 0.20 mSv, and 0.10 mSv, due to fire accidents (vehicle collision, storage facilities, treatment facilities). These were 0.2%, 0.4%, and 0.2% of the limit, and the radiation risk to workers was evaluated to be very low. The results of this study will be used as basic data to prove the safety of the disposal of GF waste. The sensitivity analysis will be performed by changing the radiation source and emission rate in the future.
        131.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate- level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.
        4,000원
        132.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경주 방폐물 처분시설의 1단계 시설로 건설된 지하 사일로 구조는 2014년에 10만 드럼 규모로 완공되어 현재 운영중에 있다. 지하 사일로 구조는 지름 25m, 높이 50m로써 방폐물을 저장하는 실린더부분과 돔 부분으로 구성되어 있으며, 돔부분은 운영터널과 연결 되는 하부 돔 부분과 상부 돔 부분으로 구분할 수 있다. 지하 사일로 구조의 벽체는 철근콘크리트 라이너이고, 두께는 약 1m이다. 본 논문에서는 지하 사일로 구조의 건설과정 및 운영과정의 단계별 유한요소해석을 수행하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소해석을 수행하였다. 2차원 축대칭 유한요소모델의 신뢰성을 검토하고자 3차원 유한요소해석도 수행하였다. 본 논문 에서는 지하 사일로 구조의 구조거동을 분석하고 구조적 안전성을 검토결과를 제시하였다.
        4,000원
        133.
        2022.05 구독 인증기관·개인회원 무료
        As the design life of nuclear power plants are coming to the end, starting with Kori unit 1, nuclear power related organizations have been actively conducted research on the treatment of nuclear power plant decommissioning waste. In this study, among various types of radioactive waste, stabilization and volume reduction experiments were conducted on radioactive contaminated soil waste. Korea has no experience in decommissioning nuclear power plants, but a large amount of radioactively contaminated soil waste was generated during the decommissioning of the KAERI research reactor (TRIGA Mark- II) and the uranium conversion facility. This case shows the possibility of generating radioactive soil waste from nuclear power plants and nuclear-related facilities sites. Soil waste should be solidified, because its fluidity and dispersibility wastes specified in the notification of the Korea Nuclear Safety and Security Commission. In addition, the solidified waste forms should have sufficient mechanical strength and water resistance. Numerous minerals in the soil are components that can make glass and ceramics, for this reason, glass-ceramic sintered body can be made by appropriate heat and pressure. The sintering conditions of soil were optimized, in order to make better economical and more stable sintered body, some additives (such as additives for glass were mixed) with the soil and sintering experiments were conducted. Uncontaminated natural soil was collected and used for the experiment after air drying. Moisture content, pH, bulk density, and organic content were measured to understand the basic properties of soil, and physicochemical properties of the soil were identified by XRD, XRF, TG, and SEM-EDS analysis. In order to understand the distribution by particle size of the soil, it was divided into Sand (0.05–2 mm) and Fines (< 0.05 mm). The green body was manufactured in the form of a cylinder with a diameter of 13mm and a height of about 10mm. Appropriate pressure (> 150 MPa) was applied to the soil to make a green body, and appropriate heat (> 800°C) was applied to the sintered body to make a sintered body. The sintering was conducted in a muffle furnace in air conditions. The volume reduction and compressive strength of the sintered body for each condition were evaluated.
        134.
        2022.05 구독 인증기관·개인회원 무료
        Sulfate-rich waste powder containing a radioactive nuclide is generated from chemical decontamination process and radioactive liquid waste treatment using ion exchange resin. The radioactive sulfate-rich waste powder should be stabilized for final disposal. The techniques for immobilization of the radioactive sulfate-rich waste powder such as hydraulic cement, geopolymer, and iron phosphate glass have been applied, however, there are limitation in these techniques. Firstly, the hydraulic cement cannot applied to the wastes containing high concentration of sulfate because the expansion, cracks, and disintegration can be happened in the waste form. Geopolymer has a low density although they can be used as a good binder. The iron phosphate glass can be utilized, however, a considerable amount of SO2 gas is emitted due to the high sintering temperature. In this study, immobilization of radioactive sulfate-rich waste powder was carried out to resolve above problems by applying low temperature sintering method using a low-melting glass. As a result, it was confirmed that the waste form has a high bulk density. The compressive strength of the waste form was over 40 MPa, which is higher than the acceptance criteria (≥ 3.44 MPa). From ANS 16.1 test, it was verified that the waste form met the acceptance criteria of the leachability index (≥ 6). It was also confirmed that the waste form was chemically durable through product consistency test (PCT). In addition, the chemical stabilities of waste forms were compared following the sintering condition and the composition of the waste forms. The difference of the chemical stability was explained by difference in the abundance of chemical form obtained from the sequential extraction test.
        135.
        2022.05 구독 인증기관·개인회원 무료
        Decontamination of spent nuclear fuel from decommissioned nuclear reactors is crucial to reduce the volume of intermediate-level waste. Fuel cladding hulls are one of the important parts due to high radioactivity. Their decontamination could possibly enable reclassification as low-level waste. Fuel cladding hulls used in research reactors and being developed for conventional light water reactors are Al-Mg and Fe-Cr-Al alloys, respectively. Therefore, the recovery of these component metals after decontamination is necessary to reduce the volume of highly radioactive waste. Electrochemical approach is often chosen due to its simplicity and effectiveness. Non-aqueous solvents, such as molten salts (MSs) and ionic liquids (ILs), are preferred to aqueous solvents due to the absence of hydrogen evolution. However, MSs and ILs are limited by high temperature and high synthesis cost, along with toxicity issues. Deep eutectic solvents (DESs) are synthesized from a hydrogen bond acceptor (HBA) and donor (HBD) and exhibit outstanding metal salt solubility, wide electrochemical window, good biocompatibility, and economic production process. These characteristics make DES an attractive candidate solvent for economic, green, and efficient electrodeposition compared with aqueous solvents such acids or nonaqueous solvents such as MSs or ILs. In this research, the feasibility of electrodeposition of Al-Mg and Fe-Cr-Al alloys in ChCl:EG, the most common DES synthesized from choline chloride (ChCl) and ethylene glycol (EG), will be tested. A standard three-electrode electrochemical cell with an Au plated working electrode and Al wires for counter and reference electrodes is utilized. Two electrolyte solutions (Al-Mg and Fe-Cr-Al) are prepared by dissolving 100 mM of each anhydrous metal chloride salts (AlCl3, MgCl2, CrCl3, and FeCl2) in ChCl:EG. Cyclic voltammogram (CV) is measured at 5, 10, 15, and 20 mV·s−1 to observe the redox reactions occurring in the solutions. Electrodeposition of each alloy is performed via chronoamperometry at observed reduction potentials from CV measurements. The deposited surfaces and cross-sections are examined by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) to analyze the surface morphology, cross-section composition, and thickness. Authors anticipate that the presence of different metals will greatly affect the possibility of electrodeposition. It is expected that although all metals are distributed throughout the surface, the morphology, in terms of particle size and shape, would differ depending on metals. Different metals will be deposited by layers of an approximate thickness of a few μm each. This research will illustrate a potential for recovery and electrodeposition of other precious radioactive metals from DES.
        136.
        2022.05 구독 인증기관·개인회원 무료
        As the decommissioning of nuclear power plants increases, there is an increasing interest in the amounts of radioactive waste. Especially, the radiation dose limit for packaging of radioactive wastes shall not exceed 2 mSv·h−1 and 0.1 mSv·h−1 on contact and at 2 m, respectively in South Korea. The DEMplus provides various environmental geometry and all properties such as materials, absorptions, and reflections and the estimation of the radiation dose rates is based on the radiation interactions of the designed 3D geometry model. With the consideration of the radiation dose rate by using DEMplus and its strategy of packaging plan, the radiation shielding was optimized and estimated in this paper. The modular shielded containers (MSC) with shielding inserted were used for radioactive wastes that require shielded packaging. In order to verify the accuracy of the estimated radiation dose rate by using DEMplus, the estimated results were compared with those obtained using MicroShield. The trends of the estimated radiation dose rates using DEMplus and the estimation of MicroShield were similar to each other. The results of this study demonstrated the feasibility of using DEMplus as a means of estimating the radiation dose limit in packaging plan of the radioactive waste.
        137.
        2022.05 구독 인증기관·개인회원 무료
        Starting with the permanent shutdown of Kori Unit 1, the first waste treatment facility in Korea will be built on the Kori site. In this facility, major process such as decontamination, cutting, radiation measurement and volume reduction of decommissioning waste are performed, and radioactive liquid waste is generated by the waste treatment process and personnel decontamination. The generated liquid waste is finally discharged to the sea through radioactive monitoring system after sufficient treatment to meet the standard radiological effluent control. Whereas the treated liquid waste is additionally diluted through the circulation water discharge conduit and discharged to the sea in the operating nuclear power plants, there is no circulation water in the waste treatment facility. Therefore, a new discharging method for dilution after treatment should be considered. In this paper, the treatment concept and discharge method of radioactive liquid waste system in waste treatment facility are reviewed.
        138.
        2022.05 구독 인증기관·개인회원 무료
        Wolsong unit 1 (W1), which is a CANDU-6 type PHWRs that had been operated for 30 years since 1983, was shutdown in 2019. In this study, the radioactive waste levels of calandria and concrete structures were calculated to establish a decommissioning plan for W1. The specific systems within the scope of this study were grouped into 6 major categories as follows: Calandria, End Shield, Fuel Channel Assembly, Reactivity Control Device, End Shield Support, Vault. The main operating history of W1 is that the re-tubing project was performed. These characteristics and operation history were reflected in the evaluation. The neutron flux and energy spectrum of each structure were calculated by using MCNP code, and ORIGEN code is implemented to the calculation of radioactivity for each nuclide using the results from MCNP and the material information of the structure. As for the impurity information, ASTM B350, B351, B353 standard was used for zircaloy alloy. For other alloy, impurity information provided by NUREG/CR-3474 was applied. Since W1 is expected to be decommissioned immediately, the waste level was evaluated under cooling conditions for 5 years after permanent shutdown. Through the level evaluation of each component obtained as a result of the study, it can be used as basic data for the radioactive waste management of the decommissioning plan.
        139.
        2022.05 구독 인증기관·개인회원 무료
        The type of accidents associated with the operation of a melting facility for radioactive metal waste is assumed to only marginally differ from those associated with similar activities in the conventional metal casting industry or the current waste melting facility. However, the radiological consequences from a mishap or a technical failure differ widely. Three critical and at the same time possible accidents were identified: (1) activity release due to vapor explosion, (2) activity release due to ladle breakthrough, (3) consequences of failure in the hot-cell or furnace chamber not possible to remedy using remote equipment.
        140.
        2022.05 구독 인증기관·개인회원 무료
        Source localization technique using acoustic emission (AE) has been widely used to track the accurate location of the damaged structure. The principle of localization is based on signal velocity and the time difference of arrival (TDOF) obtained from different signals for the specific source. However, signal velocity changes depending on the frequency domain of signals. In addition, the TDOF is dependent on the signal threshold which affects the prediction accuracy. In this study, a convolutional neural network (CNN)-based approach is used to overcome the existing problem. The concrete block corresponding to 1.3×1.3×1.3 m size is prepared according to the mixing ratio of Wolseong low-to-intermediate level radioactive waste disposal concrete materials. The source is excited using an impact hammer, and signals were acquired through eight AE sensors attached to the concrete block and a multi-channel AE measurement system. The different signals for a specific source are time-synchronized to obtain TDOF information and are transformed into a time-frequency domain using continuous wavelet transform (CWT) for consideration of various frequencies. The developed CNN model is compared with the conventional TDOF-based method using the testing dataset. The result suggests that the CNN-based method can contribute to the improvement of localization performance.