검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 52

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.
        4,200원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The shell & tube-type heat exchanger has been frequently used because it shows simple structure, easy manufacturing and wide operation conditions among many heat exchangers. This study aims to investigate the characteristics for thermal flow of coolant and the possibility of damage for tube equipped with shell due to thermal stress. For these purposes, The thermal flow of coolant in tube was simulated using ANSYS-CFX program and thus the behaviors of coolant were evaluated with standard k-ε turbulence model. As the results, as the flow rate of coolant in tube was increased, the mean relative pressure was also increased with quadratic curve, however, as the surface temperature of tube was increased, mean temperature difference was linearly increased. Finally it showed that the damage of tube could be predicted, that is, which tube was the most weak due to thermal stress.
        4,000원
        3.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For this study, we established a system for the CPU cooling performance evaluation and conducted performance tests on air-cooling and water-cooling to understand the effect of the CPU cooling method on performance. For the performance evaluation, the test chamber and water-cooling system were set up, the workload S/W was selected, and a case file was created. In the case of the air-cooling, the CPU temperature is sensitively affected by the outside air temperature, the direction of the board installation, and the influence of the airflow formed around it, and may cause a lot of fluctuations in the CPU temperature. When the water-cooling system was applied, the CPU temperature decreased from 75℃℃ to 37℃ compared to the air-cooled type under the test conditions of 28.5℃ and 3LPM cooling water supply temperature and flow rate. As the CPU clock speed increased due to the decrease in temperature, it was found that the job execution time was reduced by 15~23%. In the future, it is expected that using this performance evaluation environment established through this study will enable us to easily conduct test evaluations for various processors, cooling methods, and changes in operating conditions.
        4,200원
        4.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The cooling characteristics of the asphalt mixture in a moving dump truck were analyzed using a numerical simulation method. The cooling characteristic can be used to determine the optimum transport path for minimizing the temperature drop of the asphalt mixture. METHODS : In this research, a coupled analysis of the discrete element method (DEM) with computational fluid dynamics (CFD) was applied for cooling characteristic analysis of asphalt mixtures in transit. Two different transit speeds, 30 km/h and 60 km/h, were considered to evaluate the effect of speed on the temperature drop of the asphalt mixture. Velocity, pressure, and temperature contours were plotted and temperature variations were compared. RESULTS : Most of the temperature drops in the asphalt mixture were observed in the middle of the dump box in the longitudinal direction. It was confirmed that a faster speed causes a greater temperature drop for the same travel time and a slower speed causes the more temperature to reach the same travel distance as expected. CONCLUSIONS : It is concluded that the coupled analysis method can be used to quantitatively evaluate the effect of vehicle speed on temperature drop in asphalt mixtures. In addition, the method can be used to determine the optimum travel path considering environmental conditions and traffic congestion.
        4,000원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of flow direction on heat transfer in water cooling channel of lithium-ion battery is numerically investigated. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that the maximum temperature and temperature difference of battery with Type 1 are the lowest because the heat transfer in the entrance region near the electrode is enhanced. As the inlet velocity is increased, the maximum temperature and temperature difference of battery decreases but the pressure loss increases. The pressure loss in Type 2 channel is the lowest due to the shortest channel length, while the pressure loss with Type 3 or 4 channel is the highest because of the longest channel length. Considering heat transfer performance and pressure loss, Type 1 is the best cooling channel.
        4,000원
        6.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.
        4,000원
        9.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.
        4,000원
        10.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Experiments were conducted on the operating characteristics and performance of various types of working fluid, filling amount and heat flow rate of a loop thermosyphon for cooling ESS battery container. As results of performance test on various working fluids, HFE-7100 and R-134a as a working fluids showed unstable operating and low performance due to vapor pressure drop, and performance was improved by increasing the number of vapor lines for reducing a pressure drop. In this study, n-pentane was more stable and showed better thermal performance among various working fluids.
        4,000원
        11.
        2019.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Commercial direct refrigerators have good energy efficiency, but are difficult to use for supercooled storage due to their large temperature deviation. Placing insulators and conductors inside the refrigerator could reduce these temperature deviations to within 0.3 degrees, allowing for the supercooled storage. The supercooled storage of salted Chinese cabbages during ten weeks was progressed to compare the other low temperature storages. The nucleation temperatures of salted Chinese cabbage were around -2.5oC and the freezing points were around -0.4oC, so -2oC was selected for the supercooled storage. The growth rate of lactic acid bacteria and yeast at -2oC storage was lower than that at 2oC storage. The reducing sugar was maintained higher due to the growth rate of lactic acid bacteria. The supercooled storage had an effect of delaying the fermentation of the salted Chinese cabbage, which may have the effect of delaying the fermentation of kimchi. This enhancement method of the direct refrigerator was effective for the supercooled storage and would be promising for commercial use.
        4,000원
        13.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the change of cooling water temperature (72, 85, 95 ℃) and engine speed (1,800, 2,000, 2,200, 2,400rpm) were experimentally investigated to confirm the operation performance characteristics of auxiliary engine for refrigeration unit. The experimental setup consisted of fuel consumption meter, power meter, and heat transfer unit. The operation performances such as BSFC, exhaust temperature, power generation, and engine efficiency of the auxiliary engine showed similar characteristics in the present experimental range, according to the change of cooling water temperatures and rpms. As the torque increased, the BSFC decreased significantly and the exhaust temperature increased. The power generation increased linearly and the efficiency was insignificant at more than 40 Nm torque.
        4,000원
        14.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 가동원전 중 2-루프 가압경수로인 고리1호기는 약 40년 운전한 후, 2017년 6월 18일 영구정지되었다. 영구정지된 고리 1호기는 주요 해체작업을 수행하기전에 계통내 선량률을 저감시켜 작업자피폭을 최소화하기 위한 계통제염을 수행할 예정이다. 일반적으로, 계통제염 범위는 원자로압력용기, 가압기, 증기발생기, 화학 및 체적제어계통, 잔열제거계통 및 원자로 냉각재계통 주요배관을 포함한다. 이러한 계통 및 기기 등을 효율적으로 제염하기 위해서는 제염과정에서 원자로냉각재계 통내 유동특성을 평가할 필요가 있다. 계통제염을 위해 순환유량을 제공하는 방법은 다양하나, 본 논문에서는 잔열제거펌프 운전에 따른 고리1호기 원자로냉각재계통내 유동특성을 평가하였다. 잔열제거펌프를 이용한 계통제염은 원자로냉각재 내 유량의 불균형을 초래하여 계통내 기기 및 배관 등에 불순물을 침적시켜 제염이 효율적이지 않다는 것으로 평가되었다.
        4,000원
        15.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Currently, the cutting oil supply device is not equipped to cool the cutting oil. Therefore, additional cooling device should be connected to cool the cutting oil. This has the disadvantage of increasing the size of the device and reducing its cooling capability. To overcome these shortcomings, cooling coils are applied to the outside of the cutting oil filtering device to develop a heat exchanger filter for simultaneous coolant filtering and cooling to improve the compactness of the cutting oil supply device and cooling capability of the cutting oil. For the development of heat exchanger filter, flow and heat transfer analysis were performed. Due to the small heat transfer area of 10 cooling coils, less heat exchange occurred. In the 20 cooling coils, the coolant cooling coils prevented smooth flow of the cooling oil in the heat exchanger filter. The cooling efficiency of the 15 cooling coils were best, and the cooling temperature decreased non-linearly as the supply flow rate of the cutting oil increased.
        4,000원
        18.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, solid solution heat treatment of consolidated nickel-based superalloy powders is carried out by hot isotactic pressing. The effects of the cooling rate of salt quenching, and air cooling on the microstructures and the mechanical properties of the specimens are analyzed . The specimen that is air cooled shows the formation of serrated grain boundaries due to their obstruction by the carbide particles. Moreover, the specimen that is salt quenched shows higher strength than the one that is air cooled due to the presence of fine and close-packed tertiary gamma prime phase. The tensile elongation at high temperatures improves due to the presence of grain boundary serrations in the specimen that is air cooled. On the contrary, the specimen that is salt quenched and consists of unserrated grain boundaries shows better creep properties than the air cooled specimen with the serrated grain boundaries, due to the negative creep phenomenon.
        4,000원
        19.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cooling towers have been widely applied to control the indoor temperature in the residential area and the living space. At operating the cooling towers, motor, fan and dropping water produce noise and vibration, which diffuse through the air or the solid object, polluting the environment. The standards can be used at estimating noise and vibration emission by showing remarkable economic or social benefits. The purpose of this study is to show the characteristics, measurement methods for the evaluation of noise and vibration in cooling tower.
        4,000원
        1 2 3