검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        1.
        2024.04 구독 인증기관·개인회원 무료
        The significance of this study lies in addressing critical issues prevalent in the worldwide construction sector, particularly concerning the durability and sustainability of cement-based materials. Plain cement composites commonly suffer from deficiencies in tensile strength and strain capacity, resulting in the formation of nano-cracks under relatively low tensile loads. These nano- cracks pose a significant challenge to the longevity and resilience of cement matrices, contributing to structural degradation and reduced service life of infrastructure. To mitigate these challenges, the integration of cellulose nanofibers (CNF) as reinforcements in cement composites presents a promising solution. CNF, renowned for their exceptional material properties including high stiffness, tensile strength, and corrosion resistance, offer the potential to significantly enhance the mechanical performance and durability of cement-based materials. Through systematic experimentation, this study investigates the effects of CNF reinforcement on the mechanical properties of cement composites. By leveraging ultrasonically dispersion techniques, CNF extracted from bamboo, broad leaf, and kenaf are uniformly dispersed within the cement matrix at varying concentrations. Compressive and flexural tests are subsequently conducted to evaluate the impact of CNF on the strength characteristics of the cement composites. By elucidating the efficacy of CNF reinforcement through rigorous experimentation, this study aims to provide valuable insights into the development of construction materials with improved durability and sustainability. Ultimately, this research contributes to addressing critical challenges in the construction industry, offering potential solutions to enhance the performance and longevity of cement-based infrastructure.
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PVA 섬유 보강 시멘트 복합체는 매우 복잡한 미세구조를 가지고 있으며, 재료의 거동을 정확히 평가하기 위해서는 미세구조 특성 을 반영하여 실제 실험과 시너지효과를 내며 효율적인 재료 설계를 가능하게 하는 해석 모델의 개발이 중요하다. PVA 섬유 보강 시멘 트 복합체의 역학적 성능은 PVA 섬유의 방향성에 큰 영향을 받는다. 그러나 마이크로-CT 이미지로부터 얻은 PVA 섬유의 회색조 값 을 인접한 상과 구분하기 어려워, 섬유 분리 과정에 많은 시간이 소요된다. 본 연구에서는 섬유의 3차원 분포를 얻기 위하여 0.65μm3 의 복셀 크기를 가지는 마이크로-CT 이미지 촬영을 수행하였다. 학습에 사용될 학습 데이터를 생성하기 위해 히스토그램, 형상, 그리 고 구배 기반 상 분리 방법을 적용하였다. 본 연구에서 제안된 U-net 모델을 활용하여 PVA 섬유 보강 시멘트 복합체의 마이크로- CT 이미지로부터 섬유를 분리하는 학습을 수행하였다. 훈련의 정확도를 높이기 위해 데이터 증강을 적용하였으며, 총 1024개의 이미지 를 훈련 데이터로 사용하였다. 모델의 성능은 정확도, 정밀도, 재현율, F1 스코어를 평가하였으며, 학습된 모델의 섬유 분리 성능이 매 우 높고 효율적이며, 다른 시편에도 적용될 수 있음을 확인하였다.
        4,000원
        3.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to experimentally analyze the flexural strength characteristics of cement mortar mixtures simultaneously incorporated with graphene oxide (GO) and polyvinyl alcohol (PVA) fibers, and to understand the composite effect of those on enhancing resistance against the initiation and progression of micro-cracks, as well as the control of macro-cracks in flexural behavior. METHODS : Cement mortar(w/c=0.5) specimens for flexural strength test, mixing 6 mm and 12 mm PVA fibers at 1% and 2% volume ratios, were fabricated. Additionally, specimens incorporating GO at a cement weight ratio of 0.05% were prepared for each mixture to analyze the effect of GO. Therefore total eight types of mixture were prepared. The fabricated specimens were subjected to flexural strength tests after curing in waterbath for 7 and 28 days. Concurrently, digital images for analyzing deformation in accordance with loading history were obtained at a rate of 20 Hz using the DIC technique. Through displacement and strain calculation via DIC, the flexural behavior characteristics of the mixtures combined with GO and PVA fibers were precisely analyzed. Furthermore, the composite effect on flexural behavior characteristics when GO and PVA fibers are incorporated was discussed. RESULTS : For the PVA fiber-reinforced cement mortar mixture, the incorporation of 0.05% GO increased the crack initiation load by up to 23%, and the maximum resistive load after cracking by up to 24%. Moreover, introducing GO into the PVA fiber-reinforced mixture increased the flexural strain just before cracking by approximately 30 to 50%, while the maximum resistive load after cracking exhibited similar strain levels with or without GO incorporation. Therefore, under flexural behavior, the integration of GO might delay crack initiation by increasing the strain concurrent with the rise in flexural stress before crack occurrence. It also seems to contribute to reducing crack expansion by synergistically interacting with PVA fibers after crack occurrence. CONCLUSIONS : It was experimentally examined that the flexural strength of PVA fiber reinforced cement mortar is improved by incorporating GO. Moreover, GO enhances resistance of crack occurrance and reduces crack propagation in combination with PVA fibers. This study suggests that simultaneous incorporation of GO and PVA fibers can synergistically improve the performance of cement composites.
        4,000원
        4.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Cellulose Nano-Crystals (CNCs) 수용액을 이용하여 시멘트 페이스트의 강도 향상에 대한 실험을 수행하고 이 연구결과를 토대로 하여 CNC 혼입에 따른 섬유보강 고인성 시멘트 복합체의 강도 특성에 관한 실험을 진행하였다. 먼저, CNC의 최적 배합비를 결정하기 위한 일환으로, 골재를 포함하지 않은 시멘트 페이스트의 강도 특성을 비교하기 위해 CNC 혼입율에 따라 수용액을 제조하였다. CNC 혼입율은 시멘트 대비 0.1, 0.2, 0.4 vol.%를 주요 변수로 하였고, 이에 따른 휨강도는 0.4 vol.%에서 플레인 시험체와 비교시 최대 8 배까지 강도가 증가하는 것을 확인할 수 있었다. 이 연구결과와 기존 연구결과를 토대로 하여, 본 연구에서는 0.4, 0.8 및 1.2 vol.%의 CNC 혼입율을 주요변수로 한 강섬유와 아마섬유를 활용한 섬유보강 고인성 시멘트 복합체 시험체를 제작한 후 역학적 강도 특성을 평가하여 섬유보강 고인성 시멘트 복합체의 구조적 성능을 규명하였다.
        4,000원
        5.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It should be noted that the use of the lathe scrap for making fiber reinforced cementitious composites(FRCCs) raised friendly environmental effect as well as economy because the lathe scrap is a by-product of steel manufactures and is occurred when lathe and milling works of them are conducted to process steel manufactures. Thus, the purpose of this research is to investigate the effect of measurements of lathe scrap on the characteristics of FRCCs. For this purpose, various lathe scraps were collected from processing plants of metal, and then these were processed 10mm, 20mm, and 40mm in lengths for 2mm and 4mm in widths, respectively. FRCCs containing lathe scraps were made according to their widths and lengths, and then characteristics such as the workability, compressive strength, and flexural strength of those were evaluated. As a result, it was observed from the test results that the optimum measurements of the lathe scrap for manufacturing FRCCs was 2mm in width and 40mm in length.
        4,000원
        6.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Shear wall systems behave as individual wall because of openings like window and elevator cage. When coupling beams are installed in shear walls, they will have high strength and stiffness so that be less damaged by lateral loads like earthquake. However, coupling beam is difficult construction method. And arranging reinforcement of slender coupling beams are especially hard. It is because the details of coupling beam provided by ACI 318 are complex. In this paper, experiments were conducted using coupling beams with 3.5 aspect ratio to improve the details of slender coupling beams provided by ACI 318. Two specimens were proposed for this study. One specimen applied with bundled diagonally reinforcement only. Another specimen applied both bundled diagonally reinforcement and High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) so that coupling beams have half of transverse reinforcement. All specimen were compared with a coupling beam designed according to ACI 318 and were evaluated with hysteretic behaviors. Test results showed that the performance of two specimen suggested in this study were similar to that of coupling beam designed according to current criteria. And it was considered that simplification of the details of reinforcement would be available if transverse reinforcement was reduced by using bundled diagonally reinforcement and HPFRCC.
        4,000원
        7.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hysteretic behavior of diagonal reinforced coupling beams is excellent during earthquakes. However, construction of the diagonal reinforced coupling beams is difficult due to complex reinforcement details required by current code procedures (ACI 318-11). Due to the detail requirement, reinforcement congestion and interference among transverse reinforcement always occur during construction field. When the aspect ratio of the beam is large, the interference of reinforcement becomes more serious. The objective of this paper is to simplify the reinforcement details of slender coupling beams by reducing transverse reinforcement around the beam perimeter. For this purpose, high- performance fiber reinforced cementitious composites are used for making coupling beams. Experiments were conducted using three specimens having aspect ratio 3.5. Test results showed that HPFRCC coupling beams with half the transverse reinforcement required by ACI 318-11 provided identical seismic capacities to the corresponding coupling beams having requirement satisfying the requirement specified in ACI 318-11.
        4,000원
        8.
        2019.10 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the tensile fracture energy absorption capacity of hybrid fiber reinforced cement composite by strain rate. Experiment result, it was confirmed that PVA suppressed the microcrack around the HSF at the strain rate 101/s, which resulted in the improvement of the pullout resistance of the HSF.
        9.
        2019.04 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the direct tensile fracture behavior of steel fiber hybrid reinforced cement composite by strain rate. Experiment result, it was confirmed that SSF suppressed the microcrack around the HSF at the strain rate 101/s, which resulted in the improvement of the pullout resistance of the HSF.
        10.
        2019.04 서비스 종료(열람 제한)
        In this study, it evaluate the Local damage properties of amorphous metallic fiber reinforced cement composite by different fiber length. 30mm and 15mm length of amorphous metallic fiber was reinforced and fiber volume fraction was set to 1.0, 1.5 vol.%. Flexural test and high speed projectile impact test was performed. As as result, 30mm length of specimen showed more good flexural and impact resistance performance compared to 15mm length of specimen.
        11.
        2019.04 서비스 종료(열람 제한)
        In this study, the bending performance of flexural specimens fabricated with ECC was compared with typical reinforced concrete specimens. Test results show that the deflection of specimens made of ECC is increased compared with that of normal concrete specimens, and ductile fracture behavior is shown.
        12.
        2019.04 서비스 종료(열람 제한)
        This paper is focused on flexural bahavior of cement composites reinforced with carbon fibers as a part of research for improving a seismic performance of structures using carbon fiber reinforced concrete(CRFC). Flexural behavior test was conducted on respective specimens reinforced with different fiber length(6mm, 12mm) and contents(0%, 0.5%, 1.0%, 2.0%, 3.0%). The result of the test showed that the flexural performance of carbon fiber reinforced cement composites are directly proportional to the fiber contents except for the specimen reinforced with 3% carbon fiber.
        13.
        2018.04 서비스 종료(열람 제한)
        In this study, it evaluate the electromagnetic pulse shielding performance of fiber reinforced cement composite by Fiber type. Hooked-ended steel fiber, Smooth steel fiber and Amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1.
        14.
        2018.04 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the direct tensile fracture behavior of fiber hybrid reinforced cement composite by strain rate. Experiment result, it was confirmed that PVA suppressed the microcrack around the steel fiber at the strain rate 101/s, which resulted in the improvement of the pullout resistance of the steel fiber.
        15.
        2018.04 서비스 종료(열람 제한)
        In this paper, the effect of steel fiber-reinforced cement composite (SFRCC) on damage resistance of steel tube member. Test results show that the cumulative energy dissipation of SFRCC specimen was about 14% higher than that of Con specimen.
        16.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate 10-6/s with multiple cracks. However, at the strain rate 101/s, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s
        17.
        2017.09 서비스 종료(열람 제한)
        In this study, it evaluate the electrical conductivity of fiber reinforced cement composite by Fiber type. Hooked-ended steel fiber, Smooth steel fiber and Amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electrical conductivity was evaluated by calculating the electrical resistivity of each specimen after measuring the electrical resistance.
        18.
        2017.09 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the tensile fracture behavior of fiber hybrid reinforced cement composite according to the strain rate. Experiment result, it was confirmed that the number of cracks and the strain capacity tended to decrease with increasing PVA fiber volume fraction at the strain rate of 101/s.
        19.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 유압식 급속재하 시험 장치를 제작하여 변형 속도에 따른 후크형 강섬유 및 폴리아미드 섬유보강 시멘트 복합체의 압축강도 및 인장강도 특성을 평가하였다. 그 결과, 변형 속도가 증가함에 따라 압축강도, 최대 응력 점에서의 변형 및 탄성계수는 증가하였으 며, 섬유 종류 및 혼입률은 변형 속도에 의한 압축강도의 영향은 크지 않았다. 본 연구에서 평가된 압축강도의 DIF는 CEB-FIP model code 2010 에 비해 상회하였으며, ACI-349의 예측값과 유사한 경향이 나타났다. 인장특성의 경우에도 변형 속도가 증가함에 따라 인장강도와 변형능력 이 크게 향상되었다. 후크형 강섬유보강 시멘트 복합체는 변형 속도가 증가함에 따라 섬유와 매트릭스의 부착력이 증가하는 것에 의해 인장강 도와 변형능력이 크게 향상되었으며, 섬유가 매트릭스로부터 인발되는 파괴 특성이 나타났다. 한편, 폴리아미드 섬유보강 시멘트 복합체의 경 우 섬유와 매트릭스의 부착력이 크기 때문에 섬유가 매트릭스로부터 인발되지 않고 끊어지는 파괴 특성이 나타났으며, 폴리아미드 섬유보강 시멘트 복합체의 인장특성에 대한 변형 속도 효과는 섬유의 인장강도에 큰 영향을 받는 것으로 판단되었다. 이러한 결과로부터 폴리아미드 섬 유보강 시멘트 복합체의 인장강도에 대한 변형 속도의 효과는 후크형 강섬유의 부착력에 대한 민감도 보다 큰 것으로 사료된다.
        20.
        2017.04 서비스 종료(열람 제한)
        In this study, it evaluate the Impact fracture properties of fiber reinforced concrete and fiber reinforced cement composite. The types of fiber are Hooked-ended steel fiber and it was mixed 0.5, 1.0 vol.% in concrete and 1.0, 2.0 vol.% in cement composites. The Impact resistance performance was evaluated by measuring the fracture grade, penetration depth and scabbing depth
        1 2