Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.
Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.
The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 μm, and WC-2 had an AGS of 0.35 μm. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall–Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.
본 연구에서는 실버 파우더의 입자 크기, 즉 평균 입자 크기가 2㎛과 7㎛, 이렇게 2가지 실버 페이스트를 개발하였다. 이렇게 개 발된 실버 페이스트에 대해서 점도 및 점탄성, 경화후에 잔류용제 유무 확인을 위한 TGA측정, Strain에 따른 저항 변화 및 전극 표면 구조 변화에 대해서 검토하였다. 이러한 결과를 정리하면 Strain에 따른 저항 변화를 최소화하기 위해서는 실버 파우더의 입 자를 2㎛정도인 것이 가장 바람직함을 알 수 있었다.
수처리 및 의약바이오 분야에서 유효물질 분리에 활용되고 있는 알루미나 중공사 분리막은 얇은 두께로 인해 취 급 및 적용시 쉽게 파괴되는 단점이 있기 때문에 분리막의 강도를 100 MPa 이상으로 향상시키기 위한 연구가 필요하다. 본 연구에서는 나노입자의 함량을 0, 1, 3, 5 wt%로 증가시켰을 때 제조된 중공사 분리막의 특성을 평가하였다. 그 결과, 나노입 자의 함량이 증가함에 따라 중공사 분리막의 강도는 79 MPa에서 115 MPa로 증가하였으며, 밀도는 1.76 g/m3에서 1.88 g/m3 으로 증가하였고 기공률과 평균기공크기는 각각 51%에서 48%로, 416 nm에서 352 nm로 감소한 것을 확인하였다. 스폰지구 조가 발달하고 스폰지구조의 기공크기가 향상된 알루미나 중공사 분리막은 100 MPa 이상으로 기계적 강도가 향상되었으며, 약 100000 GPU의 높은 질소 투과도 및 약 3000 L/m2h의 높은 물 투과도를 나타내었다. 따라서, γ-알루미나 나노입자를 소 결조제로 첨가하는 것은 α-알루미나 중공사 분리막의 기계적 강도를 효과적으로 증진시키고 높은 투과성능을 유지할 수 있 는 매우 유효한 방법임을 확인하였다.
Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 μm. The bulk graphite density using the filler powder with a particle size of 54.09 μm is 1.38 g/cm3, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 μm powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 μm powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.
As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
This study demonstrates the effect of addition of Fe particles of different sizes on the critical properties of the superconductor MgB2. Bulk MgB2 is synthesized by ball milling Mg and B powders with Fe particles at 900oC. When Fe particles with size less than 10 μm are added in MgB2, they easily react with B and form the FeB phase, resulting in a reduction in the amount of the MgB2 phase and deterioration of the crystallinity. Accordingly, both the critical temperature and the critical current density are significantly reduced. On the other hand, when larger Fe particles are added, the Fe2B phase forms instead of FeB due to the lower reactivity of Fe toward B. Accordingly, negligible loss of B occurs, and the critical properties are found to be similar to those of the intact MgB2.
강원지역은 우리나라의 다설지로서 복잡한 지형 때문에 강설량의 공간변동성이 크다. 특히 동풍조건에서 강설이 발생할 시 강설량의 공간적 변동을 예측하기 어렵다. 동풍조건에서는 강원지역 내 위치에 따라 대기환경조건이 다르며 이는 강설의 특성에도 영향을 줄 수 있다. 본 연구에서는 동풍 조건에서 태백산맥의 풍상측과 풍하측에서 강설의 미세 물리적 특성을 서로 비교 분석하였다. 강원지역 내 4개 관측지점을 선정하여 파시벨 수적계로 입자크기분포를 관측하였다. 얻어진 강설입자 크기 분포의 특성을 풍상측과 풍하측간 비교한 결과, 풍상측의 강설입자 크기 분포는 풍하측에 비해 넓은 분포를 가졌고 작은 강설입자의 수도 많았다. 강설입자의 수농도에 비례하는 보편특성수농도와 강설입자의 직경에 비례하는 보편특성직경 둘 다 풍상측에서 상대적으로 큰 값을 보였다. 또한, 얼음수함량과 강설강도 비교에서도 풍상측 지점에서 큰 평균값을 가졌다. 이 결과가 나타난 원인은 태백산맥 산사면에서 공기덩어리의 강제적 상승효과로 풍상측 지점 상공에 새로운 강설입자의 생성이 활발했기 때문으로 추정된다. 또한, 풍상측은 따뜻하고 습한 동풍이 불어오므로 이로 인해 지상기온이 0oC 근처에 머무르며 강한 부착과정이 일어나기 좋은 조건이다.
In this study, dry-milled rice flour from different varieties (Samgwang, Boranchan, Hanareum, Dasan, Hangaru) and different particle sizes were used to manufacture Jeung-pyun and the quality characteristics were analyzed. The Jeung-pyun produced from Samgwang, Dasan and Hangaru milled rice flour showed highly dense pores. The Jeung-pyun produced from Hanareum only showed a significant difference according to the particle size. Samgwang, Boranchan and Dasan varieties with a particle size of 150 m showed a significant decrease in volume (p<0.05). Samgwang showed the lowest pH at all particle sizes (p<0.05). The sweetness of Samgwang varieties was the highest at 3.27-3.63°Brix (p<0.05). The hardness of Jeung-pyun increased with increasing particle size (p<0.05). The highest acceptance of Jeung-pyun in terms of volume and bitter taste was observed with Hanareum at a particle size of 50 m. When the particle size was 50 m, the overall acceptance was highest for Jeung-pyun made from Samgwang followed by Hanareum. The acceptance of all the sensory characteristics was high when the particle size of rice flour was 50 m. When the appearance of Jeung-pyun was measured, Samgwang showed a dense structure and low hardness. Hanareum showed an increasing volume and springiness. Overall Samgwang and Hanareum were found to be the most suitable varieties for the production of Jeungpyun.
본 연구는 지방 대체제로 첨가된, 각기 다른 입자의 크기로 분쇄된 돈피가 유화소시지의 이화학적 성질과 저장 기간, 그리고 관능검사에 끼치는 영향을 조사하기 위해 수행되었다. 지방 대체제로 첨가된 돈피는 대조구에 첨가된 지방 12%와 동일한 수준인 지방 4%, 분쇄 돈피 8%를 T1에서는 3mm, T2에서는 5mm, T3에서는 7mm로 분쇄하여 첨가하였다. 모든 처리구들은 일반적인 냉장 온도인 4±1℃에서 0, 5, 10, 15일간 저장되며 시료로 쓰였다.첨가되는 돈피의 분쇄 입자 크기가 클수록 전단가와 경도, 검성, 씹힘성이 유의적으로 증가하였고, 전 저장구간에서 포장감량, TBARS, VBN, 씹힘성은가식권 내의 값을 유지하며 유의적으로 증가하였다. 관능검사에서는 Color에서 입자의 크기가 클수록 부정적인 영향이 있었고, Chewiness는 저장기간이 지남에 따라 유의적으로 증가하였고 입자 크기가 작을수록 유의적 으로 높은 값을 나타내었다. 실험결과 돈피를 첨가한 처리구가 대조구에 비해 Shear force, Puncture test, 관능 평가에서 우수한 평가를 받았고 저장성검사와 이화학적 성질에서도 큰 차이를 보이지 않고 모두 가식권내의 값을 유지하였다. 이는 돈피가 육가공품에서 지방이 작용하는 역할을 충분히 수행가 능하며, 좋은 평가를 얻어 지방을 대체할 수 있을 것으로 판단된다.
In pressure retarded osmosis (PRO) process, thin film composite (TFC) type membranes which can withstand high operating pressure are required. In this study, glass fibers (GF) are used as additive for mechanical strength enhancement of the support layer of TFC membranes. The support layers were fabricated by a phase inversion method by using the casting solution of blended GF (two different size of milled GF) with polyethersulfone (PES). The fabricated support layers were characterized by FE-SEM, FT-IR, contact angle goniometer, and universal testing machine. Lab-scale ultrafiltration experiment was carried out to measure their performance. As a result, the support layer with milled GF showed higher mechanical strength and water flux than the pure PES support layer, and the support layer with smaller size GF showed higher performance.
This study aims to analyze the effects of 4 directions of wind, wind speed, year of construction of slate roofs, installation area and other factors on the concentration and size distribution of airborne fiber particles in farmhouses with a slate roof containing asbestos. Airborne fiber particle samples were collected from the air in six houses with a slate roof containing asbestos using a high flow rate pump (10 L/min) for 2 hours, three times a day with a different condition, 72 times in total. The airborne fiber particle concentrations were measured using a phase contrast microscope, and the size of fiber particles of 72 samples in total was estimated using the mean value of those in each sample measured at 100 with a field of view. The total average concentration of fiber particles collected from in the air in four directions of the targeted farmhouses was 2.83 fiber/L, and its maximum concentration was 5.75 fiber/L, which means that among all samples there was no place that exceeded 10 fiber/L, a recommended indoor air quality standard. The average size of the fiber particles was 11.55 μm, and the maximum size was 40 μm. A multiple regression analysis of factors affecting the concentration and size of fiber particles in the air collected from the farmhouses with a slate roof containing asbestos found that the closer to the main wind direction (p<0.001) and the faster the average wind speed (p<0.05), the fiber particles concentration became significantly higher. In this case, the coefficient of determination was 52.8%. It was also found that the wider the total area of the slate roof (p<0.001) and the slower the average wind speed (p<0.05), the longer the fiber particles; the coefficient of determination for this finding was 19.6%. The concentration of fiber particles in the air of farmhouses with a slate roof appeared to be the highest under the main wind direction, and became significantly higher as the wind speed became faster. This proved that fiber particles were leaked from the slate roof. The size of the fiber particles became significantly longer as the area of the slate roof became wider and the wind speed became slower.